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Abstract

The Operational Responsive Space (ORS) program requires flexible and respon-

sive satellites to meet user’s needs. Traditional satellite design methods are typically

iterative processes that optimize individual components, subsystems, and ultimately

the entire satellite. This study focuses on developing a new approach for creating Re-

sponsive Satellites (RS) from Plug-and-Play (PnP) components. The aim is to create

an approach that quickly evaluates a wide variety of possible satellite configurations

and identify the best configurations that meet the user’s needs and constraints.

Satellite configurations are created by matching locations on the satellite struc-

ture with PnP components. Various constraints are derived from the user’s inputs at

different levels of the configuration process. As the user provides more information

related to PnP satellite, additional constraints can be applied to reduce the number

of PnP satellite configurations resulting in manageable numbers or even zero config-

urations.

In this research, we found that applying constraints whenever it is applicable

results in eliminating invalid configurations. Each satellite configuration is saved to a

database, if the user desires, a sorted list can help the user find the lowest mass and

least expensive satellite that meets their requirements. Configurations can also be

eliminated when respective properties are very close to each other which will reduce

the number of satellite configurations from which the user can select. A goal of this

research effort is to help users assess basic concept feasibility from several key aspects

in a short period of time. Finally, more specialized and computationally demanding

estimation tools could be called from this approach to perform further analysis, such as

thermal, vibration, or structural, to compare and contrast performance characteristics

of various satellite configurations.
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A Constraint Based Approach For

Building Operationally Responsive Satellites

I. Introduction

As a result of the need for responsiveness in space assets, the trend in satellite

design is progressing toward producing smaller more capable satellites. The De-

partment of Defense (DoD) is developing an Operationally Responsive Space (ORS)

capability to rapidly put a satellite into orbit shortly after the request is made by

Joint Forces Commanders (JFC) or other users in field. In support of this capabil-

ity, the Air Force Research Laboratory (AFRL), Defense Advanced Research Projects

Agency (DARPA), and other DoD organizations have invested heavily in technologies

that allow satellites to be designed and assembled using more modular approaches.

This ORS capability should result in a significant contribution to the current space

capabilities in the terms of military and civilian applications such as replacing failed

satellites quickly, augmenting/surging existing capabilities, filling unanticipated gaps

in capabilities, and enhancing survivability and deterrence.

1.1 Background

Typical satellite development programs can take more than a decade and even

small satellites - those less than 1,000 lbs - can take up to 5 to 7 years to develop [21].

In traditional satellite design, developers may encounter many difficulties in selecting

components at the planning stage due to the fact that it is not easy to carry out precise

estimations of cost, weight, and power. Interdependencies among the subsystems

force developers to use an iterative process of modifying the design of individual

components and subsystem until all requirements are met. Each iteration changes the

weight and power budget resulting in some components iteratively replaced with other

components. Growing costs and schedules due to challenging mission requirements

have made space increasingly unresponsive. The US Air Force (USAF) has developed

1



a Responsive Space (RS) program to reduce the time required to design, build, test,

and field small satellites. One goal of the RS program is to assemble a satellite in

only 6 days [11]. To achieve this goal, all components would have to be readily

available and quickly identified for integration and test. To minimize the integration

and test process, pretested, modular, and standardized components would have to be

used. Developing low-cost, highly reliable components that are Plug-and-Play (PnP),

similar to the modular standards used in today’s PCs, will simplify this process to

the point that a wide variety of satellite configurations can be assembled from a

standardized set of components.

1.2 Plug-And-Play Satellite Development

The ORS approach consists of three tiers [1]:

1. Utilize existing on-orbit capabilities to provide the required space-based capa-

bility within days from establishing the need,

2. Utilize field-ready or nearly field-ready capabilities to satisfy warfighter needs

within days-to-weeks of establishing the need, and

3. Develop an entirely new capability within a year.

Traditional methods used to build small satellites are inadequate for meeting

the Tier 3 objectives, therefore, a new method of designing satellites using PnP com-

ponents is required. The PnP components allow designers to create networks by sim-

ply plugging components together (self-organization) and to connect to other devices

through use of electronic datasheets embedded in components (self-description).

The ORS program requires the use of commercial off-the-shelf (COTS) com-

ponents to reduce both the complexity and cost of the satellite which ultimately

increases the reliability of the satellites [16]. Currently, there is little standardization

among software and hardware developers for PnP components. However, there have

been many studies focused on developing PnP components [1], [8], [12], [15]. There

2



Figure 1.1: PnPSat structural engineering model [1]

has also been a concerted effort by the ORS office and AFRL to create PnP stan-

dards resulting in the first PnP Satellite which is expected to launch in the 2008/2009

timeframe. Figure 1.1 shows the structural engineering model of PnPSat ready for

the test for Z-axis characterization and loading.

1.3 Problem Description

Quickly determining which components and overall configuration best satisfy

the user’s constraints, like cost, weight, size, or life span, is very difficult because of

complexity of satellite subsystems, numerous of available component choices, limited

budgets, and high reliability requirement of space assets. While configuring a satellite

system, decisions made for a subsystem often influence other subsystems resulting in

changes of constraints and forcing an iteration in the design process. For example, if

there are four different battery packs available in a warehouse that satisfy all require-

ments and constraints, the number of plausible combinations increases significantly if

there are also many locations in which the battery packs could be located. The goal

is to create a software tool to first determining which configurations meet the user’s

needs and constraints and then estimate a wide variety of performance specifications

based on each satellite configurations, like pointing accuracy or slew rate. Therefore,

3



it would be possible for a single engineer to assess the basic concept feasibility from

several key aspects in a short period of time. More specialized and computation-

ally demanding estimation tools could be called after the satellite configurations have

been determined to perform further analyses, such as thermal, vibration, or struc-

tural. This would allow users to compare and contrast performance characteristics of

various satellite configurations.

The end goal of this study is to create, analyze, and test an approach for this

rapid satellite configuration problem. This approach will rapidly determine the con-

figuration space from which cost and performance estimates of the possible responsive

satellite systems (configurations) are computed so the end user can rapidly select the

best satellite system that suits their needs.

1.4 Motivation

The notion of assembling complete systems out of prefabricated parts is a com-

mon approach in final product manufacturing. Using COTS components leads to

the creation of automated, prompt, and economical products because standardized

components were developed to meet the developers’ requirements. The properties of

components are typically provided by the manufacturers that include all functional

and non-functional attributes of the COTS components which allows end product

developers to assess products before selection and assembly.

Similarly, manufacturing satellites to meet the short timeline requirements of

ORS requires PnP components to be used. Evaluating all possible configurations in a

design space full of PnP components with different attributes and interfaces is a very

challenging problem. Literally, tens of millions of valid satellite configurations could

be built from a few hundred components.

The future integration environment of PnP satellites will likely be composed

of thousands of PnP components and their respective software components. Current

satellite design approaches rely heavily on manual configuration methods in which de-

4



velopers are extremely involved in each step. Moreover, rapidly configuring satellites

composed of thousands of components is not possible with current approaches.

Typically, satellite systems are very complex and estimating their performance

characteristics is not a simple process because of the interconnection and dependencies

between components. Component meeting a single requirement by itself , may not

meet the requirements when assembled together with other components. Thus, there

is need of a software approach that helps developers analyze all possible satellite

configurations that can be created from a repository of PnP components and reduce

the number of the configurations to manageable numbers by applying constraints

during the satellite development process.

1.5 Outline of Thesis

Chapter II, Rapid Satellite Integration Studies, is divided in three sections:

Section 2.1, Satellite Design Software Tools, and Section 2.2, Satellite Design Ap-

proaches review and analyze existing satellite design concepts and developments that

are related to this research effort. Section 2.3, Plug-and-Play Developments, briefly

describes developments in the Plug-and-Play technology to achieve the goal of build-

ing RS satellite in weeks. Chapter III, Optimizing the Process of Building Responsive

Satellites, presents the key methodologies used in this research effort. Section 3.1,

Object Oriented Design, explains some of the key features of object-oriented program-

ming directly related to this approach. Section 3.2, Gaussian Probability Distribution

Function (PDF), provides a brief explanation of the Gaussian PDF that is used to gen-

erate component property values such as mass, cost, etc. Section 3.3, Multiplication

Principle, Combinations, and Permutations, explains the principles of multiplication,

permutations and combinations applied to this component configuration problem.

Section 3.4, Overview of the Method, gives a brief overview of the approach created

in this research effort. Some key elements of this approach like Virtual Warehouse,

3D Environment, and Graphical User Interfaces are discussed in Sections 3.5, 3.6,

and 3.7, respectively. Section 3.8, Methods Developed to Create PnP Satellites,
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covers the key steps of the approach to generate valid PnP satellite configurations

from known components. Chapter IV, Results and Analysis, discusses several test

scenarios created to analyze the approach developed in this research. Finally, Chap-

ter V, Conclusions and Future Work, describes the key conclusions derived from this

research effort and makes suggestions for future research.
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II. Rapid Satellite Integration Studies

The purpose of this chapter is to review and analyze existing satellite design ap-

proaches and recent PnP developments that are related to this research effort. This

chapter is divided in three sections: Satellite Design Software Tools, Satellite Design

Approaches, and PnP Developments. The first two sections are focused on describing

existing approaches for designing the “best feasible” ways for building satellites in a

shorter time. The last section briefly describes developments in the PnP technology

to achieve the goal of building RS satellite in weeks. The title for every subsection

is formatted such that Organization/Company/Author is listed first and Research

Area/Software Tool is listed second.

2.1 Satellite Design Software Tools

Engineers in the satellite design field are concerned with creating simpler and

more accurate models of their satellites to make the satellite design process faster

and more accurate. Although there are numerous freeware and commercial software

modeling tools available to perform orbit/constellation, communication and attitude

analysis, only a small number of programs exist that assist users in the process of

rapidly building and designing finalized designs of satellite. The following section

describes the variety of software applications developed to help designers shorten

design times for either complete or partial satellites.

2.1.1 Princeton Synergetics Inc. and User Systems - Spacecraft Systems De-

sign and Simulation Environment (SSDSE). SSDSE is a software tool created

to assist the user in designing, sizing, and simulating satellite systems [6]. SSDSE

consists of four main modules: System Design and Sizing, System Resource Simu-

lation, Component Level Database, and Cost Estimation. The System Design and

Sizing Module creates subsystem characteristics using the performance and mission

requirements provided by the user. The Simulation Module utilizes the subsystem

characteristics to simulate resource interaction as a function of time to identify prob-

lems or conflicts with subsystems of the satellite. After eliminating the problems

7



identified in the simulation by adjusting the subsystem characteristics, the user can

choose candidate components from a database to form a satellite configuration. The

System Design and Sizing Module was developed in Microsoft Excel integrated with

Fortran compiled codes to enhance portability of the module.

SSDSE has payload, launch vehicle, and bus subsystem databases for the user

to access. One advantage of this program is that the user is capable of changing

the attributes of the subsystems and components in the database anytime during

the configuration process. An iterative approach, very similar to the approach in

Spacecraft Mission and Analysis and Design (SMAD) [22] which will be described in

Subsection 2.2.1, is used to estimate the mass and power interactions to estimate the

attributes of each subsystem. The Cost Estimation Module uses historical mass/cost

data to estimate the total cost of the satellite. The Cost Estimation Module may

not lead to correct estimations because there might be new technology available at a

lower cost, but the software tool allows the user the capability of overriding software

estimates to provide more accurate estimates as well.

SSDSE software tool is designed to support rapid development of small satellite

systems - those in the 200 kg class. This software helps designers reduce the time and

effort spent on a particular design phase, however it is not developed to be all-in-one

tool to create satellite designs that depend on a given mission requirements.

2.1.2 Air Force Research Laboratories (AFRL) - SatBuilder
TM

. The soft-

ware tool named SatBuilder
TM

is designed to meet the needs for Responsive Space [16]

in AFRL. SatBuilder
TM

is an artificial intelligence (AI) based toolset that provides

rapid designs through wizards and interfaces with existing design tools such as Sys-

tems Improved Numerical Differencing Analyzer (SINDA), NASA Structural Analysis

(Nastran), and Structural Dynamics Toolbox (SDT). SINDA is a software system for

solving lumped-parameter, finite difference, and finite element (FE) representations

of physical problems governed by diffusion-type equations. Nastran is a powerful gen-

eral purpose FE analysis (FEA) program which is also a standard in the structural
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analysis field, which provides users with a wide range of modeling and analysis ca-

pabilities. SDT provides a general FE architecture and a range of specialized solvers

used to study vibration problems.

OpenSat, a database and data exchange environment, is used to integrate ex-

isting tools within SatBuilder
TM

. OpenSat also tracks requirements, related test and

verification information, and PnP components. Like the approach presented in this

research, the mission requirement, launch vehicle, and payload information need to

be validated by SatBuilder
TM

in order to create a design space before the creation of

the satellite bus. Overall, the SatBuilder and OpenSat provide a good foundation for

future development and implementations for designing ORS satellites.

2.1.3 Star Technologies Corporation - Spacecraft Design Tool (SDT). Star

Technologies developed the SDT for AFRL’s Responsive Space Testbed (RST) in

support of DoD’s ORS initiative [19]. SDT supports all satellite design processes

from mission capture to deployment by providing the user real-time spacecraft dy-

namics/kinematics, earth environment, and sensor/actuator models. SDT not only

simulates satellite components such as sensors and actuators but also provides user

the capability of adding their own subsystems (propulsion or power subsystem) to

create a true software PnP environment. Figure 2.1 shows how the Responsive Space

Satellite Cell in RST is configured to deliver the simulated environment to Hardware-

In-Loop (HWIL) Device Under Test (DUT). As shown in Figure 2.1, SDT provides the

Detailed Simulation and the Spacecraft Drag & Drop functions, as well as graphical

user interface (GUI) data displays.

The SDT software tool utilizes component based simulation framework devel-

oped by Star Technologies and Microsoft’s .Net Framework, which provides support

for nearly 40 programming languages, on demand model loading, and rapid customiza-

tion of scripts. The SDT Framework is integrated with an active Data Dictionary

which provides hierarchical namespace for most objects at runtime and can be mod-

ified during the simulation. Data Items can be dragged from the Data Dictionary
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Figure 2.1: RST Functional Partitions [19]

tree view to a Monitor view to see text values, a strip chart, Mercator view, and

3D visualization. Component configuration, initialization script, visible views, and

input/output (I/O) configuration information is kept in a scenario document which is

loaded by a .Net application to start SDT. The Block Diagram Editor Module allows

user to edit hierarchical component configurations which includes environmental, 6

DoF, visual, actuator, electrical, and propulsion building blocks.

A 3D visualization displays Earth Centered Inertial (ECI) based view of Earth

with other environmental components. The camera can be assigned to any component

and image views and can be tied to any location on the earth. Any number of satellites

in the scenario can be displayed in multiple 3D view ports.

Overall, SDT has various features for designing and testing PnP satellites and

subsystems. Since the current SDT design is based on existing satellite components,

creating satellites using SDT software tool requires close user interaction with the SDT

and SDT Framework iteratively. In this research, our goal is to create a “constraint

based” approach for the “automatic” integration process of components to create PnP

satellites that requires assuming all satellite components are prefabricated, tested, and

available for integration.
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2.1.4 University of Munich, Institute of Lightweight Structures (LLB) - A Soft-

ware Approach for Rapid Design of Satellites. A team in the LLB developed a

software approach to support and enlarge the design branch to reach a better design

in shorter time [14]. The team found that it is very beneficial when the satellite de-

sign team is supported with a set of feasible or nearly feasible satellite configurations

supporting basic requirements (geometric, mechanical, thermal etc). The designers

also found that they could analyze the conceptional satellites and spend time focused

on more specific requirements such as fastening and piping. They went on to say that

comparing different designs provides a great advantage compared to traditional satel-

lite design processes. Designers can make early decisions to reduce time for overall

satellite design, thus costs can also be reduced.

Their optimization approach is composed of three basic elements: Computer

Aided Design (CAD) tool (CatiaV5, Pro/Engineer), Genetic Optimization Algo-

rithm (GAME), and Application Management System (MOSES). MOSES manages

the data, administration jobs, and control execution, additionally, it provides some

tools for optimization, approximation, and visualization. MOSES basically integrates

different discipline specific software codes into a common environment. LLB team

also uses MATLAB R© to integrate CAD tools such as Catia, Pro/Engineer with FE

software (Ansys, Nastran). The LLB team created an interface capable of reading

and regenerating design models and it determines mass, inertia moments, component

collision within models. GAME is a multiplicative evolutionary algorithm based on

a Pareto-Ranking method where different objective functions are converted into to a

single objective function by combining all functions into a scalar measure. A set of

different solutions can be created from single solutions produced for each run.

The LLB team demonstrated the capabilities of the optimization system when

they created GammaBus, which is the carrier of the Galileo System [14]. The main

equipment for GammaBus consists of over 50 components of which 10 of these com-

ponents are located in the payload bay. A task for configuration of those payload

components is created to locate optimal positions of the components with respect
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to constraints such as center of gravity and possible component collision constraints.

Each component could be positioned on any of the four side panels or on the top panel.

A CAD model is created to represent all the geometry for the structural and equip-

ment components. The CAD model is used in calculating the moments of inertia,

center of gravity, and collision between the equipment components. In this example,

it takes almost 24 hours to analyze 10,000 different payload configurations on a 20 PC

cluster. Maintaining functionality and inheritability of the configuration is ensured

by genetic algorithm through placing the components of the same subsystems close to

each other or onto the same panel. The algorithm also considers the center of gravity,

field of view, and other design constraints. After all of the geometric constraints are

satisfied, stiffness and load carrying optimizations can also be done in their program.

Overall, LLB approach evaluates and creates different satellite configurations

by selecting components in a reference satellite configuration through a Catia CAD

tool. The LLB approach is similar to the approach discussed in this research because

it provides a method to evaluate a wide variety of configurations. However, LLB

approach does not allow “automatic” creation and evaluation of all possible satellite

configurations based on available components in inventory; the main focus of this

research effort.

2.1.5 Air Force Research Laboratory (AFRL) - Drag-and-Drop and Wizard

Guided Satellite Design Approaches. In the referenced document, Lanza and oth-

ers introduced a new concept for building responsive satellites [12]. In this new con-

cept, rapid satellite integration starts with mission specifications. Tools like Analytic

Graphics’ Satellite Toolkit (STK) simulate the mission and predict the space environ-

ment characteristics (radiation, temperature, and solar flux) in which the satellite will

operate. STK also estimates many other parameters such as RF link performance and

ground site availability. Not only are the basic design specifications created for the

ideal specifications, but also some constraints (mass, volume, budget, etc) that need

to be taken into consideration. Capturing mission needs provides designers a great
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amount of insight before starting the satellite design. Designers can begin designing a

satellite system satisfying the mission needs through a combination of two approaches.

The first approach, “drag-and-drop”, allows designers to manually choose the com-

ponents including sensors, GN&C components, structural panels, power etc, with the

exclusion of items like wiring harness and software. The component may be provided

from a vendor, developed by design team, or introduced later in the process.

The second part of the design process guides the designer by “wizards” from

which the subsystems and eventually an entire satellite is generated. The wizard only

accepts limited number of user inputs and creates a number of spacecraft configura-

tions which can be modified later to meet the mission requirements.

In the next step, the rapid design/integration process allows the “virtual” satel-

lite to be evaluated in a modeling and simulation program so that the virtual satellite

and the original design specifications can be compared. If the differences between the

mission capture and current design are not acceptable, it may be necessary to alter

some aspects of the previous steps in the virtual design. Expanding the depository,

increasing use of wizards or changing the parametric setting could produce better

configurations.

When a satisfactory virtual design is produced, the AFRL design approach will

let the user run some qualification simulations. A satellite FE model is created on

which structural and thermal response predictions of the behavior in the space envi-

ronment are computed. The software allows the user to change the design or specifi-

cations to create a satellite design that passes these qualification simulations. Once

the design is qualified via simulation, software and wiring harnesses are automatically

generated.

Lanza and others also stated that there are some challenges in the concept

explained above which includes: development of a computer-aided design tool for

rapid development of satellites, development of PnP depository, and minimizing the

custom components used in satellites.
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The concept of using a variety of software tools is good and is intended to

to be part of this research effort. Overall the drag and drop wizard approach is

quite similar to the approach presented in this research. However, it differs from the

approach presented in this research since AFRL’s approach is a manual method that

requires close user interaction with software tools and focusing on creating only one

satellite configuration at a time. The main purpose of the approach presented in this

research is to create all possible valid “virtual” satellite configurations automatically

while eliminating invalid configurations in the process based on constraints created

from user inputs.

2.2 Satellite Design Approaches

So far, we have discussed specific software applications for satellite design. In

this next section, we look at design approaches that may or may not be developed

in code. The traditional satellite design processes typically consists of iterative steps

and require significant time for integration of components software applications in an

optimal way. On the other hand, in an ORS satellite design process, different methods

need to be developed to significantly reduce the number of iterations and allow de-

signers to explore the design space more quickly and efficiently. The following section

describes predominantly non-software approaches for developing/designing satellites.

2.2.1 Microcosm Inc. - Space Mission Analysis and Design (SMAD) Approach.

Wertz and Larson state that no single process can fully cover all contingencies in

space mission analysis and design process [22]. In their book, SMAD [22], they de-

scribe a satellite design method that has evolved from years of space space exploration.

In the SMAD approach, analysis and satellite design are iterative processes in that

designers gradually refine both the mission requirements and methods for achieving

those requirements. Table 2.1 shows a broad overview of the SMAD approach which

primarily leads designers to more detailed and better defined designs in each iteration.
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Table 2.1: The Space Mission Analysis and
Design (SMAD) Process

Define Objective 1 Define broad objectives and constraints
2 Estimate quantitative mission mission

needs and requirements

Characterize the Mission 3 Define alternative mission concepts
4 Define alternative mission architectures
5 Identify system drivers for each
6 Characterize all mission concepts and

architecture

Evaluate the Mission 7 Identify critical requirements
8 Evaluate mission utility
9 Define mission concept (baseline)

Define Requirement 10 Define system requirements
11 Allocate system requirements to sys-

tem elements

In Step 1, broad mission needs are defined to achieve the mission. Every mission

typically has one primary objective and secondary objectives. Developers return to

these broad objectives over and over in the iteration process to make sure the work

done supports the space mission.

Step 2 quantifies how closely developers wish to achieve the broad objectives

based on mission needs, technology, and cost constraints. Trade studies need to be

performed to generate quantitative requirements. For example, the pointing accuracy

of a payload to observe the Earth is related to the money spent on acquisition of that

payload. There are three broad mission area objectives that can be transformed into

requirements:

1. Functional Requirements which are defined by how well the system has to per-

form to meet its objectives,
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2. Operational Requirements which are defined by how the system operates and

how the users interact with the system, and

3. Constraints that limit system developers by cost, schedule, and implementation

techniques.

Step 3 defines alternative mission concepts that consists of best options that

are available to carry out the mission. Step 3 also includes issues such as how data

will be sensed and delivered to end user, how the mission will be controlled, and the

overall mission timeline.

Step 4 defines alternate combinations of mission architectures to meet the re-

quirements of the mission concepts. All space mission architecture has following basic

elements to some degree includes: Ground Elements, Mission Operations, Command

Control and Communication Architecture, Launch Element, Spacecraft, Payload, Or-

bit, and Constellation. In a satellite system, many individual aspects influence the

overall design, however, there are number of components or key parameters referred

to as “drivers” that significantly influence the overall cost and performance.

Step 5 identifies the principal system drivers which influence performance, cost,

risk or schedule for each alternative mission concepts. For most space missions, system

drivers include number of satellites, altitude, power, component size, and weight.

Step 6 defines what a system is in detail by determining a numerical list of com-

ponents for power, weight, and pointing. While characterizing the mission, system-

level requirements and trades are the primary focus of the developers.

Step 7 identifies critical requirements which dominate the space mission’s overall

design and are responsible for determining cost and complexity of system. An example

for the critical requirement for an Earth observation satellite might be location accu-

racy, resolution, and coverage. Developers should focus on these critical requirements

to determine how good they should be made and how much money should be spent

for them to achieve broad objectives. Critical requirements may differ depending on

the alternative mission concepts.

16



Step 8 quantifies how well the design meets the critical requirements or broad

objectives and provides decision makers with performance vs cost charts.

Step 9 evaluates alternative designs where one or more baseline system designs

which meets most or all of the mission objectives is selected. The baseline provides a

temporary milestone to compare and measure design progress. However, the baseline

should not be regarded as unchangeable rather than a starting point for an iterative

process. As the system design matures, the baseline becomes more firm and eventually

becomes the system design.

Step 10 translates the broad objectives and constraints of the mission into spe-

cific system requirements for builders of the satellite.

Finally, in Step 11, the numerical requirements are allocated to the components.

The final list of requirements that defines the quality of the job of the space mission

is created by the developers.

In the SMAD approach, the subsystems are configured according to the payload.

Additionally, the subsystems need to be configured in accordance with other subsys-

tems that result from the iterative configuration approach. The SMAD approach

requires multiple iterations of each step to reach to a point that all requirements are

defined based on the mission type. This iterative approach consists of many inte-

gration and validation tests of components that can not be done in the short time

requirements the ORS program requires.

The SMAD approach defines requirements of diverse mission scenarios. Based

on mission requirements, PnP components are selected from warehouse inventory

and used to create satellite configurations. Thus, one suggestion would be to use

SMAD approach beforehand to identify mission requirements and design constraints

to minimize the number of satellite configurations before implementing the approach

presented in this research effort.
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2.2.2 Arthur S. Hall - Seven Step Process. Hall’s approach is comprised

of seven steps: Problem Definition, Value System Design, System Synthesis, Sys-

tem Modeling, Optimization, Decision Making, and Implementation (see Figure 2.2).

Each step of Hall’s approach is influenced by the actions taken in the earlier steps.

Hall’s method is an iterative process, like the SMAD process, that forces refinement

in each step as the process continues. The sequence allows developers to define the

problem, evaluate options, and create possible solution alternatives. In the Problem

Definition step, developers define the system needs and determine which elements can

be altered and which elements can not be altered when solving the problem. The ob-

jectives that should be met in solving the problem are also determined in the Problem

Definition step. In the Value System Design step, developers create some measure

for each objective to determine how well a potential solution satisfies the objectives,

moreover, the measure should support the decision makers’ goals or objectives. In

the System Synthesis step, some feasibility tests are applied to the alternative solu-

tions to clarify their relevance to satisfying system needs and objectives. In order

to qualify each alternative solution, Hall’s approach encourages developers to create

models and simulations. Once the basic modeling is accomplished in the Optimiza-

tion step, different aspects of each possible solution are altered in an attempt to make

each alternative as good as possible. In the Decision Making step, developers rank

the alternatives based on decision maker’s subjective values and decide which alter-

natives require further study. With alternative solutions selected, a plan of action

for the next iteration through the Seven Step Process is created. Once an adequate

implementation strategy is accepted by the decision maker, Hall’s Seven Step Process

is completed.

Overall, Hall’s Seven Step Process is similar to the SMAD process in that it re-

quires iteration and assumes component level optimization can occur. In this research

effort, we want to eliminate the iterative process because it does not allow creation

of responsive satellites in the time frame that ORS requires.
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Figure 2.2: Hall’s Seven Steps [7]

2.2.3 Air Force Institute of Technology (AFIT) - MODSAT Approach. From

and others explain that both Hall’s and the SMAD approach result in developers wast-

ing time performing numerous iterations in the design process [7]. Additionally, the

SMAD approach requires that the payload is the key focus in designing the bus.

Neither Hall’s or the SMAD approach provides adequate tools for designing a stan-

dardized satellite bus. An AFIT design team created a new design approach called

MODSAT by customizing Hall’s and SMAD approaches. The MODSAT approach is

comprised of the eight steps and is described below.

The first two steps of MODSAT approach, Problem Definition and Value System

Design steps, are very similar to Hall’s first two steps. In the Problem Definition

step, a well defined title for the problem along with a scope are created and problem

constraints and needs are identified. The selection criteria for the problem solution

are defined in the Value System Design step which also defines the standards by which

the designers evaluate possible solutions.

The Trade Studies step evolved from the SMAD approach. Although, in the

SMAD approach it is not specifically mentioned that subsystem level trades would

occur in the process, MODSAT has both the system and sub-system trades occurring

early in the design process. For example, whether using fuel cells or batteries along
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with a solar array as part of the power subsystem would require a system level trade-

off study. On the other hand, the type of the power regulator used in the power

subsystem is decided by both subsystem and system level trade-off studies. Any

incompatibility among components found later in the design process may be hard to

compensate for with simple modifications. Making trade design studies early in the

design process and defining system boundaries reduces the time spent identifying the

principal cost and performance drivers. Overall, they stated that designing a satellite

is an art, therefore, many satellite components have to be strategically placed within

the limits of a satellite structure to meet constraints such as thermal, center of mass,

volume, mass, and size.

The AFIT design team uses first order estimates and relationships from the

SMAD process in their Modeling Step. Time and cost savings can be best realized

through analyzing models, especially when requirements or assumptions change of-

ten. Modeling usually requires three-dimensional (3D) visualization of the placement

and orientation of the components. Using the base design, it is possible to create

alternative designs in a timely fashion by moving, replacing, and resizing the models.

System Synthesis and System Analysis steps follow the Modeling step. The System

Synthesis step creates alternative solution sets and the System Analysis step score

each alternative against the problem’s evaluation structure. In the Decision Making

step, a sensitivity analysis is performed by allowing one variable to change at a time.

Sensitivity analysis helps decision makers with subjective decisions. The last step in

MODSAT is the Implementation step which includes the plans and recommendations

of the design team for fielding the selected alternative.

The majority of the steps come directly from Hall’s seven step process with

reordering of the system synthesis and modeling steps in addition to the trade studies

step. The MODSAT approach doesn’t include Hall’s optimization step. The MOD-

SAT approach distinguishes itself from SMAD by not focusing on requirements as

the key factor for satellite bus design. Additionally, MODSAT process specifically

includes a method for evaluating the values of each design alternative. Overall, the
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MODSAT approach created from both SMAD and Hall’s approaches allows develop-

ers a chance to create a satellite bus design without regard to a particular mission

type.

2.3 Plug-And-Play (PnP) Developments

Now that we have looked at software tools and approaches related to this re-

search, it is important to discuss recent PnP hardware developments. The PnP tech-

nology in satellite design has improved significantly in recent years. In this section,

some examples of PnP technologies supporting the goals of ORS are described.

2.3.1 Air Force Research Laboratory (AFRL) - Responsive Space Advanced

Technology Study (RSATS). In 2004, AFRL conducted a responsive space study

to examine the benefits by having an ORS capability. AFRL’s RSATS led to the

identification of some key PnP technologies [15]. One of the primary areas that this

study focused on is personal computers (PC)/networks. The universal serial bus

(USB) is the most well-known standard that is widely used in many devices and

represents a good example of the PnP concept. Once the user plugs the device into

an appropriate port/socket, the USB system accomplishes identification, resource

configuration, registration, and power distribution of the device for rapid use for a

compatible application.

2.3.2 AFRL - Adaptive Avionics Experiment (AAE). AAE was a responsive

space experiment led by AFRL, to examine the role of possible reconfigurable compo-

nents to enable rapid integration [12]. Some of the research areas AAE was exploring

off-the-shelf sensors that could be plugged into a receptive bus, a generic wiring man-

ifold that can be customized/modified in seconds, and a software controlled system

checkout that could reduce check-out time.

Lyke and others explained that software and wiring harnesses are the most

significant barriers to PnP components. In contemporary spacecraft, even when stan-
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dard interfaces are used, it is often necessary to customize both the hardware and

software for each spacecraft component. Each combination of these standard ele-

ments requires custom wiring harnesses in addition to custom software that could

require many months to create.

Today, it is a very common practice to allocate several months in a development

schedule to integrate components produced in many different locations by different

people/companies [12]. Adaptive avionics allows complex configurations through com-

bining “off-the-shelf” state reconfigurable PnP components and subsystems. Machine-

negotiated interfaces, one that allows self-configuration and self-organization, permits

developers to create more reliable systems by reducing error-prone human interpreta-

tion.

The idea of the “drag-and-drop” satellite was introduced by AFRL, as explained

in the Section 2.1.5, and it requires that most satellite components be pre-built and

reconfigurable so that they could easily be programmed to perform different tasks.

The components are engineered to be rapidly assembled by using structural standards

and reconfigurability concepts such as adaptive manifolds, and self-aligning connec-

tors. These are some of the key concepts on which this research effort is built.

2.3.3 AFRL - Adaptive Wiring Manifold (AWM). AWM can be used as a

standard prefabricated wiring harness which can be configured rapidly before launch

[12]. The AWM provides anomaly mitigation during both integration phase of the

satellite and on orbit because it is comprised of hundreds of relays which are accessible

through software commands. Even though this is an interesting technology, it is not

considered in this research.

2.3.4 AFRL - Appliqué Sensors (AS). AS provides a mechanism for sensors

and actuators that can be networked with a common interface through AWM so that

their placement on the spacecraft is not restricted to specific locations [12]. AS has

distributed intelligence providing self-configuration and self-healing components. In
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Figure 2.3: CSA’s Structural Architecture - Demonstrates
how a standard set of component can be assembled to create
varying satellite structure [1]

the AAE experiment, it is proposed to test simple dose rate and total dose radia-

tion sensors along with some other sensors for monitoring health and environment

conditions such as power, vibration, and temperature.

2.3.5 CSA Engineering, Inc. - Robust, Reconfigurable Structural Architecture.

CSA Engineering, Inc. developed a structural architecture that provides developers

the capability of assembling different configurations based on the needs of mission,

launch vehicle, and payload using a set of structural components [1]. The approach

described as a “2x4 and plywood” approach which uses prefabricated aluminium/hon-

eycomb panels and sets of frame elements. The frame elements are used for keeping

panels attached to each other. Additionally, the same panels can be used in different

configurations. As shown in Figure 2.3, similar panels are used to create rectangu-

lar and hexagonal busses while frame elements and bottom and top panels changes

between the two configurations. Since prefabricated structural components can be

assembled in a very methodical and controlled manner, the architecture provides ex-

tremely tight alignment tolerance, thus an easier assembly process.
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Figure 2.4: PnPSat Structure in Flat-Sat Configuration [1]

2.3.6 Honeybee Robotics Spacecraft Mechanism Corp. - Attachment Mecha-

nism for Mechanical/Electrical/Thermal Connections. Honeybee focused on si-

multaneous mechanical and electrical connections between structural components to

assemble a complete satellite within a matter of hours [1]. Honeybees’s design is

based on the Quick-Insertion-Nut (QIN), which allows a bolt to be inserted into a

mechanism acting as a nut. After the satellite passes initial check-out, the structure

is locked down by simply rotating each bolt less then one revolution with a torque

wrench. Figure 2.4 shows pictures of the QIN and a demonstration model of the rapid

attachment of a “box” satellite.

When the QIN is torqued to the designed value, an elastic, as opposed to plas-

tic, deformation occurs in the nut. Therefore, the cycle is repeatable up to 1000

cycles without any bolt back out. The QIN also behaves extremely non-linearly when

not fully tightened, which is an important feature supporting the structural health

monitoring (SHM) efforts for rapid check-out of responsive satellites. If there is a

fault, SHM provides a capability of pinpointing the location, type, and severity of

the fault [2]. Detecting rapidly the location of the fault (which may be as simple as

tightening a bolt) is very helpful for immediate repair of satellite.

2.3.7 AFRL - Space PnP Avionics (SPA). AFRL, in collaboration with

other government, industry, and academic organizations started the Responsive Space

(RS) program to research how it would be possible to create space systems in a
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shorter time [8]. The main idea is to accelerate component integration by employing

intelligent interfaces referred to as Space PnP Avionics (SPA) in the design process.

SPA components are similar to USB components of today’s PCs in the terms of self

description and self-organization. The xTEDS mechanism (XML-based electronic

datasheets) in SPA components makes it possible for components to carry their own

documentation. In principal, SPA may eliminate artificial constraints caused by a

fixed network structure by using self-forming networks. The Satellite Design Au-

tomation (SDA) framework helps user to translate the needs of the developers into

a buildable satellite system which meets that need. The SDA framework guides the

designer to determine mission requirements and constraints as well as orbit and flight

characteristics of the mission which are developed based on available launch options.

A set of tools helps developers to find a “good enough” spacecraft configuration based

on SPA components supporting mission, orbit, and flight characteristics.

The study concluded that the technology and standards to be developed in a

multi “spiraled” approach [15]. Four development phases were created starting with

Generation “zero” (Gen 0) which studied the development of near-term hardware

interface concepts based on the commercial off-the-shelf (COTS) technologies. The

authors stated that Gen 0 implementations are not suitable for the harshest radiation

environment, but they provide a good insight for early PnP component development.

The Generation 1 (Gen 1) study had the same focus as Gen 0, with addition of

radiation-hardened components. The Generation 2 (Gen 2) study focused on mov-

ing from centralized architecture to a distributed architecture while maintaining the

backwards compatibility with Gen 1. The Generation 3 (Gen 3) study focused on

implementation of “geographic awareness” of components, adaptive wiring manifold,

and self-awareness.

The authors stated that creating a responsive spacecraft rapidly is difficult be-

cause of the technical challenges among the subsystems, development of the avionics,

and software [15]. Interfaces among components, wiring harness, and auto-generated

codes are the key elements for bringing together the components of payload, space-
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craft and/or launch vehicle. In the personal computer industry, there is significant

standardization effort in PnP components. PnP components in space industry should

result in components becoming low-cost, rapidly integrable, and more reliable in time.

Reconfigurability plays an important role in reducing the time necessary to integrate

PnP components.

The SPA approach fully supports creating complex configurations of virtually

any sensor or actuator type. This behavior makes the network easily reconfigurable

and robust. SPA is defined as an interface-driven standard supporting the rapid de-

velopment of spacecraft busses and payloads. The SPA standards use commercial

standards (such as USB) with additional specifications engineered to accommodate

special constraints such as high power, synchronization, and fault tolerance. Intercon-

nect standards including USB, Spacewire, and Ethernet are not themselves sufficient

enough to achieve PnP. SPA-U, based on the existing USB (version 1.1) interface

standards, not only supports 12 Mbps data transport but provides power up to 3A

at 28 V and synchronization using 1 Hz sync pulse via supplemented conductors.

Spacewire based SPA (SPA-S) is an European Space Agency (ESA) standard very

similar to SPA-U device with higher speed data transport and power handling. SPA-

S components are more complex, but smaller than SPA-U components.

Presently, many people designing payloads suitable for PnP satellites bring along

concerns of additional cost, complexity, and risk. It is unlikely that two independently

developed components will work efficiently in the same network without standardized

communication interfaces. To break conventional satellite manufacturing legacy, the

AFRL team started an experimental PnP satellite (PnPSat) design and has stated

that they have encountered many obstacles; thus they have concluded a “clean sheet”

approach is more suitable for constructing a responsive satellites. They started by

applying PnP principles to mechanical, electrical, and software interfaces in the satel-

lite.
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The modularity and complexity-hiding are the two most important principles

demonstrated in PnPSat. The current PnPSat design has 48 standard PnP mechan-

ical and electrical interfaces located on either interior and exterior surfaces providing

flexibility to 25 PnP components [8]. The research effort presented in this thesis

is based around SPA standards that are fully utilized in AFRL’s PnPSat. PnPSat

represents the future of ORS satellites because it enforces modularity of components.

2.3.8 SpaceWorks, Inc. - PnP Satellite (PnPSat) Structure and Multifunc-

tional Panels. The goal of SpaceWorks’s PnPSat is to develop a highly capable

satellite bus that can accept large number of space experiment via standard electrical

and mechanical interfaces [1]. The main focus of this approach is the development

of clamshell panels where SPA electronics can be housed internally. The exterior of

the panels provides a set of standard electrical and mechanical interfaces for rapid

satellite component integration. Figure 2.5(a) shows the aluminum panels with an

iso-grid internal structure. The empty space within the panel accommodates electrical

components and harnessing as shown in Figure 2.5(b).

SpaceWorks and AFRL focused on the standards for mechanical and electrical

interfaces to enhance component development. The interior and exterior surfaces of

spacecraft panels have 5 cm x 5 cm grid pattern for eight fasteners for mechanical

mounting of all components and experiments. Each of the six spacecraft panels has

eight electrical endpoints that serve as the electrical interface to the PnP network.

Figure 2.5(c) shows three fully integrated structural panels with two reaction wheels

assemblies and some other components (torque rods, sun sensors, magnetometer)

mounted on for Attitude Determination and Control Subsystem (ADCS) testing. The

integration of components is easily conducted by simply mounting the components

into place and connecting electrically via standard electrical connectors. The panels

similarly connect to each other creating a structure that is able to collaborate with

satellite components and subsystems.
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(a) (b) (c)

Figure 2.5: Pictures of SpaceWorks’ panels
(a) external and internal structure of the clam-shell pair,
(b) internal electrical wiring and circuit boards, and
(c) standard electric/mechanic interfaces

Figure 2.6: PnPSat Structure in Flat-Sat Configuration

If all components are available and attachment points are known, the spacecraft

structure can be fully assembled in less than one hour as a result of “flat-sat” design

approach demonstrated in Figure 2.6. Hinges located on five of the panel-to-panel

joints allows any individual panel to be opened in less then 10 minutes permitting

access to the satellite interior. The research presented in this document is based

on this PnPSat design, where the approach presented is designed to automatically

determine the locations of every component so the users can rapidly determine the

best configuration that meets their needs.
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III. A Constraint Based Approach for Building

Operationally Responsive Satellites

This chapter presents the key methodologies used in this research effort. Section

3.1 explains some of the key features of object-oriented programming (OOP) directly

related to this approach. Section 3.2 provides a brief explanation of the Gaussian

probability distribution function (PDF) that is used to generate a component’s prop-

erty values such as mass, cost, etc. The principles of multiplication, permutations,

and combinations that apply to this component configuration problem is introduced

in Section 3.3. An overview of the approach created for this research effort is given

in Section 3.4. Some key elements of the constraint based approach presented in this

research like Virtual Warehouse, 3D Environment, and Graphical User Interfaces are

discussed in Sections 3.5, 3.6, and 3.7, respectively. Finally, Section 3.8 of this chap-

ter covers the key steps of the approach to generate valid PnP satellite configurations

from known components.

3.1 Object Oriented Design

The purpose of object-oriented design (OOD) is to reduce large problems into

smaller and more manageable problems by creating classes with a simple and usable

interface while not exposing the users to the internal operations of the class [20].

Both Reusability and Extendability are the two major features of OOD that are used

extensively in this research. Reusability can be defined as the likelihood that a seg-

ment of source code can be used again to add new functionalities with slight or no

modification. Extendability is the ease with which the software that can be modified

to increase functional capacity [3]. Using OOD helps programmers design software

with extension points so that new programmers can add new functionality to existing

software with a minimal of effort and reusing the previous codes as much as possible.

A simple analogy to explain classes and their contents is explained next. Sup-

pose we want to drive an automobile and make it go faster by pressing down on

its accelerator pedal [5]. The automobile is an extremely complex mechanical device
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through which the user interfaces with it by applying inputs into the accelerator pedal,

brake pedal, and steering wheel. The pedal “hides” the complex mechanisms that ac-

tually make the automobile go faster, just as the brake pedal “hides” the mechanisms

that slow the automobile, and the steering wheel “hides” the mechanisms that turn

the automobile. By looking at the blueprints, we can see how the accelerator pedal

relates to all other components in the automobile.

In Java programming, classes (blueprints of accelerator pedal, brake etc.) are

designed to perform the classes’ specific tasks that are called methods (go faster, slow

down, turn right/left). If you want to perform a task, a method must be created. The

method describes the mechanisms that actually performs the tasks. The method also

hides the complex tasks that it performs from its user, just as the accelerator pedal

of an automobile hides from the driver the complex mechanisms of making the car

go faster. Just as we cannot drive a blueprint of an automobile, we cannot “drive” a

class. We must first build an object of a class (actual automobile) before we can get

a program to perform the methods.

One of the primary features of object-oriented programming (OOP) is inheri-

tance. Inheritance provides software reuse in which a new class is created by absorbing

an existing class members and enhancing them with new or modified capabilities such

as altering inherited method or adding new attributes. Attributes consist of a name

and value to define the properties of an object. When creating a class, rather than

declaring completely new members, the programmer can decide that the new class

should inherit the members of an existing class. The existing class is called the su-

perclass, and the new class is the subclass. Each subclass can become the superclass

for future subclasses.

A subclass normally adds its own additional fields and methods. Therefore, a

subclass is more specific than its superclass and represents a more specialized group of

objects. Typically, the subclass exhibits the behaviors of its superclass and additional
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behaviors that are specific to the subclass. For a full introduction and discussion of

OOP refer to references [5] and [17].

3.2 Gaussian Probability Distribution Function (PDF)

Currently, PnP hardware standards have not been fully established in the re-

sponsive space (RS) industry to the point that a repository of PnP components exists.

Also, many of the properties of PnP components will be proprietary and may not be

available. Therefore, a virtual repository is created for this research using Gaussian

PDFs to create normally distributed sets of PnP components and their attributes

based on actual components. We are assuming that in an actual software implemen-

tation of this approach, the contractors who create the PnP component, will provide

the key properties such as mass, reliability, mass moments of inertia, etc.

The Gaussian PDF, also called “normal distribution” and described as a “bell-

shaped curve”, is one of the most commonly used distributions. The Central Limit

Theorem states that under a wide range of circumstances the PDF that describes

the sum of random variables tends towards a Gaussian distribution as the number of

terms in the sum approaches infinity [9]. A random variable x is said to be normally

distributed with mean μ, variance σ2, and standard deviation σ if its PDF is

ϕ(x) =
1

σ
√

2π
e−

(y−μ)2

2σ2 . (3.1)

Figures 3.1 and 3.2 show a variety of Gaussian PDF distributions.

Nearly 68% of values drawn from a normal distribution are within one standard

deviation; about 95% of the values are within two standard deviations; and about

99.7% lie within three standard deviations, as shown in Figure 3.2. In this research,

all values such as mass, reliability, and quantity are randomly generated for every

component using Gaussian PDFs that have means and standard deviations estimated

from actual small satellite component data [23]. The Java Math Library provides a

pseudorandom Gaussian distribution function where the mean is 0.0 and the standard
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Figure 3.1: A selection of Normal Distribution Probability
Density Functions (PDFs) [4]

Figure 3.2: Gaussian PDF [13]
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deviation is 1.0. This library is modified to generate Gaussian normal distribution

numbers based on different means and standard deviations, see Appendix A Listings

A.1 and A.2.

Gaussian distributed x values, which are used in creating a virtual repository,

are generated in this research based on given set of actual component data by following

calculation

x = μ + G(σ/3) (3.2)

where G is a Gaussian distributed value with mean of 0.0 and standard deviation

of 1.0. Dividing the standard deviation σ derived from the actual component data

by 3 generates numbers that lie within calculated standard deviation with 99.7%

probability.

For the purposes of showing an example of how the Gaussian PDF distribution

is used in this approach, a library consisting of 100 components is created as shown

in Figure 3.3. One of the attributes of the components in the virtual repository is

the Availability that defines the quantity of a particular component. As shown in

Figure 3.3(a), the quantity of each component varies between 1 and 9 and follows a

Gaussian distribution. Since the Gaussian PDF can produce any real valued num-

ber, randomly created numbers outside minimum and maximum values are filtered.

The boundaries applied to Mass attribute is shown with “vertical dashed lines” in

Figures 3.3(a) and 3.3(b).

To create random values for the Availability attribute, an exponential distri-

bution might be better suited and could have been easily implemented. However,

the purpose of generating random values here is to create a virtual repository that

assigns realistic attributes to each component in the library and the main purpose of

this research is focused on developing a new approach for designing PnP satellites.
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(a) (b)

Figure 3.3: Component Values Generated using Gaussian
PDF

3.3 Multiplication Principle, Combinations, and Permutations

The approach developed in this research focuses on creating satellite configu-

rations by combining component combinations which are created from “like” (same

model and manufacturer) components and component location combinations which

are created based on component combinations. The “multiplication principle” and

“combinations”, which are described below, are used to create component combina-

tions and component location combinations, respectively.

The “multiplication principle” can be best explained with a simple example.

Assume we have a task that consists of r operations. Operation 1 can be performed

in m1 ways, operation 2 can be performed in m2 ways, operation 3 in m3 ways, and

so forth. Then, the task can be performed in

N = m1 × m2 × m3 × mr (3.3)

ways.

Similarly, suppose that we have one type of sun sensor, three types of earth

sensors, and four types of thrusters with unlimited quantities to select for the Attitude

Determination and Control Subsystem (ADCS). Assuming the user wants to have
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Figure 3.4: Example of Multiplication Principle

two sun sensors, two earth sensors, and six thrusters integrated into the satellite

configuration, a total of twelve different combinations can be created as shown in

Figure 3.4.

On the other hand, creating component location combinations is a “combina-

tion” problem for two reasons. First, we can not assign more than one component to

the same location. Second, the order of component locations does not matter. Because

of creating component combinations from “like” components, switching the locations

of “like” components will not create a new configuration. For example, assume we

want to create satellite combinations from a component configuration consists of three
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Figure 3.5: Four Color Coded Component Locations

“like” components labeled C C C, and a component location combination consisting

of three component locations, L1 L2 L3. The satellite is composed of matching com-

ponents with component location that a sample match would be C-L1 C-L2 C-L3.

This configuration will not change, even though we switch order of the component

location to L2 L1 L3.

“Combinations” can be defined as an arrangement of r objects, without regard

to “order” and without “repetition”, selected from n distinct objects and is denoted

by

nCr =
n!

(n − r)!r!
(3.4)

where a combination of n objects is taken r at a time.

For example, assume that we want to create component location sets for sun

sensors. Suppose that we want to use two sun sensors in the satellite and on the

selected satellite structure we have four locations that sun sensors can be connected,

as shown in Figure 3.5. From Equation (3.4), 4C2 is six, meaning that six different

combinations of two sun sensors in four locations can be created as shown in Figure 3.6.

Components and locations of components on the satellite are the key items that

must be determined when building PnP satellites. In this research, to create combi-
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Figure 3.6: Example of Six Different Combinations of two Sun
Sensors in Four Locations

nations of components and their locations we first selected the components and then

determined component locations with different “orders” for those selected compo-

nents. Locations with different “order” creates different satellite configurations from

same components. Another approach could be created by components with differ-

ent “orders” and then assign those components to selected locations. However, the

second approach is not recommended because there will be thousands of components

in the warehouse, and creating component combinations regarding the “order” of

components creates extremely large numbers of combinations to be evaluated.

In our approach, if we allow use of “various” (different model or/and man-

ufacturer, but still performs same function) components in the configurations and

“order” of components does not matter, the number of component combinations can

be calculated using following equation

nCr =
(n + r − 1)!

r!(n − 1)!
(3.5)
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where a combination of n objects is taken r at a time allowing repetition of compo-

nents.

A simple calculation can be made to calculate the total number of configurations

in the cases where we allow “various” components. If we assume that the order of the

components in the component combinations does not matter and allow using “various”

components, finding the number of component combinations become a “permutation”

problem that can be calculated by

P = nr (3.6)

where n is the number of components to choose from and we choose r of them. Be-

cause different component combinations that consist of same components in different

orders, “order” doesn’t matter in creating location combinations. In a situation where

permutations are used to calculate component configurations, finding the number of

location configurations becomes a “combination” problem that can be calculated by

Equation (3.4). For example, assume that we want to create component combina-

tions consisting of two components from C1 C2 C3 and component locations for each

combinations from L1 L2 L3. When we allow using “various” components and re-

garding the orders of the components, the list C1 C1, C1 C2, C2 C1, C1 C3, C3

C1, C2 C2, C2 C3, C3 C2, C3 C3, represents the nine component configurations, as

calculated from Equation (3.6), and for each configuration L1 L2, L1 L3, L2 L3, three

component locations, Equation (3.4), can be created. The multiplication of compo-

nent permutations and location combinations gives us the total number of potential

configurations.

3.4 Overview of the Constraint Based Approach

From the previous Section 3.3, it is clear that “state explosion” -a condition of

extraordinarily large numbers of configurations typically caused by wide variety of

components and locations- is a problem. To over come this problem, this research
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establishes a “constraint based” approach for creating manageable number of satel-

lite configurations from numerous components and component locations. “Constraint

based” refers to the idea of filtering components, component locations, or combi-

nations based on constraints created in different levels of the configuration process

of building a PnP satellite. Some key techniques and methods of this approach have

been implemented in software to test the approach, see Appendix A. While discussing

the methods, some sample implementation screen shots of the approach are included

to demonstrate what a commercial implementation of this approach might look like.

In the approach created from this research, properties of all PnP components and

satellite structures that houses PnP components are efficiently stored in a database

referred to as the ObjectDB [18].

Various constraints are derived from the user inputs at different levels of the

configuration process as shown in Figure 3.7. User inputs might be very general infor-

mation such as mission type, mission duration, or very specific such as the selection of

a particular component and its respective location on the satellite that is determined

beforehand to be used in all design configurations. The more inputs a user provides

related to a PnP satellite, the more constraints can be created and it might be possi-

ble to reduce the number of possible valid PnP satellite configurations to manageable

numbers or even to zero (indicating no feasible solutions exists). In this research, the

user provides constraints such as mass, cost, reliability, number of each components,

mission type, mission duration, etc. Available constraints are applied whenever it is

applicable to minimize the number of satellite configurations. It is understood that

more user inputs would be required in a commercial implementation of this approach.

The PnP satellite structures manufactured by AFRL and SpaceWorks Inc. have

many connection locations that PnP components can be attached to, see Section 2.3.8.

Satellite configurations are created by assigning components to the locations on the

satellite structure as shown in Figure 3.8.
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Figure 3.7: Overview of Constraint Based Approach
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Figure 3.8: Two Panels of PnP Satellite with various Compo-
nents [1]

Each satellite configuration is saved to a database and the various configurations

are sorted based on cost, weight, and/or other variables. It is very likely that some

components with similar properties and different part numbers exist in the warehouse.

Different satellite configurations created from those similar components will have very

similar properties such that those satellites can be assumed virtually the same with

respect to cost, mass, etc. In this approach, configurations can also be eliminated

when properties are very close to each other. In the end, the goal is to rapidly find

satellite configurations that meet the user’s needs from which the user can compare

and contrast to determine the best configuration.
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3.5 Virtual Repository - PnP Component Library

PnP components will be created by a variety of contractors/companies using

different manufacturing methods that will adhere to common standards developed

by AFRL (Section 2.3) to ensure compatibility. We assumed that all components

are prefabricated, tested, and validated beforehand, so that users don’t spend time

validating every component/subsytem when they are needed. The time spent testing

and validating should be done beforehand to meet the goals of the 6-day satellite

build [11]. The virtual repository contains every components’ computer aided design

(CAD) drawings and attributes such as mass, center of mass (CM), moments of inertia

(MOI), reliability prediction, etc. Additional component attributes may be included

and stored in a commercial implementation of this approach.

A data structure composed of different level of entities is created to accommo-

date all elements of the virtual repository. Each entity level accommodates a group of

components having the same attributes and functionalities. Any component used in

composing a satellite belongs to a minimum of one entity level in the designed data

structure. In this document, names related to data structure such as entities and

attributes are italicized to prevent any confusion with actual meanings. For exam-

ple, the italicized word Component represents the entity in the data structure while

“Component” refers to the physical part. Component is the highest level entity from

which all other lower level entities inherit. Lower level Components are categorized

based on their characteristics and functionalities to form some other entities such as

Sun Sensor, Earth Sensor, Thruster, or Reaction Wheel. Similarly, entities in data

structure like Sun Sensor, Earth Sensor, and Thruster represent actual component

types such as sun sensor, earth sensor, and thruster in the warehouse. All entities

inherit most common attributes such as Mass, Cost, Availability, Reliability, etc. from

the Component entity. Currently, the Component attributes described in Table 3.1

have been created to test the proposed approach and more attributes can be added

to this initial list as new ones are identified.
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Table 3.1: Component Attributes

Component
Attribute

Description

Id A unique name for the Component

Availability Quantity of like components (same Id) in the PnP component li-
brary

Connection
Type

Common interface that provides physical bonds, data transfer con-
nection to the bus, electric power through Connection Points. In
order to attach a PnP component to a connection point, the Con-
nection Type attributes of Components and Connection Point of
the satelite structure must match

Cost Purchase or replacement cost of a component in the PnP component
library, it doesn’t include the labor cost of integration

Dimensions Length, width, and height of the component in meters

Mass Mass of the component in kilograms

Orientation The orientation that the component can be rotated without any
restriction in functionality. Orientation defines pointing directions
with respect to satellite attitude such as +X, -X, +Y, -Y, +Z, -Z,
where +Z is assumed the zenith and -Z is the nadir direction. In
order to attach a component into a connection point, the Orienta-
tion attribute of Connection Point of the satellite structure should
support the Orientation attribute of Component

Reliability Reliability of the component based on the failure rate provided
by the manufacturer. Overall reliability of a satellite system can
be estimated based on position (parallel/serial) of components and
subsystems in the architecture of satellite system
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Figure 3.9: Hierarchy of Entities

All entities inherit common attributes from Component and have some other

attributes specific to their characteristics. For example, a sensor component, which

is a member of the ADCS entity, has the Accuracy attribute where a component

that belongs to Power doesn’t have. Entities like Sun Sensor, Earth Sensor, and

Thruster can form another sub-entity if they can be grouped based on more specific

functionality. As shown in the Figure 3.9, Control Unit is a Component and belongs

to both the Power Regulation Control entity and Power entity at the same time. The

Control Unit can also be grouped into other entities. Lower level entities inherit all

attributes from higher level entities including all Component attributes. Entities like

Power, ADCS, Propulsion, etc. represent subsystems and have common attributes

such as Center of Mass (CM) and Inertia Tensor (I ). Estimations of CM and I can

be stored and used when it is needed. By combining OOD and the satellite subsystem

hierarchy, we created a data structure that accommodates a wide variety of different

properties of PnP components. Having different attributes at different levels in the

system makes coding and calculations easier because it hides the complexity of data

structure at different levels.

PnP Components and Satellite Structures that accommodate those components

are the two types of physical elements from which a PnP satellite is created. We are
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assuming that the payload is also PnP compatible and is treated as a component.

A Satellite Structure is comprised of panels with various connection points that ac-

commodate electrical and structural interfaces for PnP components to be connected.

In Figure 3.8, actual connection points and different components are shown for two

panels of a PnP satellite. We assume that there will be different sizes of the Satellite

Structure available for different mission types, and each one will have a variety of

Connection Points. The Connection Points have attributes such as Connection Type

and Orientation to define relation between Connection Points and Components. The

Connection Points can only be attached to Component types by having same Con-

nection Type attribute. The attributes of Connection Points are shown in Table 3.2.

If all Components support the same Connection Type, the resulting number of

configurations will be extremely large if the number of connection points and compo-

nents is also large. For example, if there are 5 components and 20 possible connection

points, there are a possible 15504 configurations that would need to be evaluated, as

computed from Equation (3.4). Creation and evaluation of large numbers of satellite

configurations can be computationally time consuming because of “state explosion”.

Both Connection Type and Orientation attributes create constraints on the

number of components that than can be associated with a specific Connection Point.

Therefore, the magnitude of the “state explosion” can be significantly decreased as

constraints are applied. Only using one type of connection interface might be more

suitable in situations where available computer resources and time constraints are not

a limiting factor. In the end, we think that the approach presented in this research

might be best used to create a database of all satellite configurations beforehand from

which various programs evaluate those configurations for user selection.

In our approach, Connection Type and Orientation attributes are created for

each Component which reduces the number of available component location options

for each component in the satellite, thus reducing number of possible configurations.

Depending on the function and operating environment, certain components should
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Table 3.2: Connection Point Attributes

Connection

Point Attribute

Description

Id A unique name for the Connection Point

Connection Type Common mechanical and electrical interfaces that Connection

Points and Components have. This approach forces Connec-

tion Points to have only one Connection Type one Connection

Point

Orientation The orientation that Connection Point supports (+X, -X,

+Y, -Y, +Z or -Z) only one Orientation for each Connection

Point

Local Rotation Rotation matrix based on the orientation that a Connection

Point supports. This matrix is used to find the mass moments

of inertia of the rotated component

Global Rotation Rotation matrix of the connection point with respect to satel-

lite origin. This rotation is used to find the total MOI of the

configured satellite and placement of models in the 3D viewer

Translation Offset of connection point from the assembly origin that is

used to find the total MOI of the configured satellite
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only be attached to specific locations on the satellite structure to satisfy restrictions.

For example, we can enforce the constraint that an earth sensor must be oriented

towards the earth in order to function properly. Currently, both Component and

Connection Point entities have a Connection Type and Orientation attributes that

must be satisfied before assigning a component to a component location. We also

assume that a connection location can only support one connection interface and

orientation, on the other hand, a component can operate correctly in more than

one orientation but only have one connection interface. The relationship between

satellite components and connection locations is similar to the relationship between

the USB devices and desktop computers. A USB thumb drive (PnP component) can

be plugged into any USB outlet of the same size on a computer. On the other hand,

a typical USB outlet (connection location) is fixed on the computer case and only

allows a USB device to be plugged in one orientation. Each Component type such as

Sun sensor, Earth Sensor, Thruster, etc. has different Connection Types, even if the

actual component has the same connection interface with other types of components.

When selecting component locations on a satellite structure, it is likely that

different size components can overlap or obstruct the view of each other. Each satel-

lite structure has a fixed number of specific Connection Points on the panels of the

structure. The distance between Connection Points is computed from the Dimensions

attributes of each Component type. Defining Connection Points that only support

certain types of Components gives us the flexibility of arranging Connection Points

that don’t let components overlap each other, however this must be done manually at

this time. Resolving overlap and obstruction issues automatically is discussed further

as a future work item in Chapter .

Based on mass, MOI, and CM of components and the coordinates of component

locations that components are attached, a total MOI for the configured satellite is

calculated using the parallel axis theorem. Assuming the moments of inertia (Icm)

are given by the component manufacturer or are measured, when the axis of rotation

is parallel with an axis about which the MOI is known and this axis is displaced by
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Figure 3.10: Parallel Axis Theorem

a distance d but is still parallel to the original axis, then the moment of inertia (I )

through this axis, see Figure 3.10, can be calculated by

Iparallel axis = Icm + Md2 (3.7)

or Equation can be expressed in 3D form as

Ixx = Īx′x′ + M(d2
y + d2

z)

Iyy = Īy′y′ + M(d2
x + d2

z)

Izz = Īz′z′ + M(d2
x + d2

y)

Ixy = Īx′y′ + M(dxdy)

Iyz = Īy′z′ + M(dydz)

Izx = Īz′x′ + M(dzdx)

(3.8)

where M is the mass of the component and the prime indices are the known values

around the component’s center of mass.

It is assumed that CAD drawings, attributes such as mass, center of mass (CM),

moments of inertia (MOI), etc. will be provided by the manufacturer of the compo-

nents. If the drawings are not available, simple shapes like cube, cylinder, sphere etc.

could be used to visualize the components on the satellites in a 3D environment. An
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(a) (b)

Figure 3.11: Graphical Transparent Satellite Viewer
(a) and (b) show transparent satellite structure and color coded
components from different angles

example 3D environment to view satellite configurations will be discussed in the next

section.

3.6 Satellite Viewer - 3D Environment

Because we expect to have 3D CAD models of every structure panel and com-

ponent, we believe a satellite design tool should have a graphical 3D environment.

An example of graphical 3D environment is shown in Figure 3.11. The graphical 3D

environment should help the user examine and visualize satellite configurations from

different angles by rotating the satellite on the screen. In this example, components

are colored coded according to subsystems they belong to. For example, Attitude De-

termination and Control Subsystem (ADCS) components are colored “green”, Power

Subsystem components are colored “red” etc. The satellite structure is transparent

so that the interior components can be easily viewed and the user can point out any

existing inconsistencies in the configuration set up such as obstructions or overlaps.

An example screen shot of current Satellite Viewer is shown in Figure 3.11.
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3.7 Graphical User Interface (GUI)

GUIs were created to interface with users in viewing satellite configurations and

calculating MOI, CM, total mass and, cost of configured satellites. Figure 3.12 is

an example constraints GUI that allows users to input Mission Type, Mission Dura-

tion, Orbit, Reliability, Weight and Cost constraints. More constraints can be added

to this incomplete list which has been created to test the approach. From the user

input, three levels of constraints are created: Satellite, Subsystem, and Component.

These constraints are used to reduce numbers of the satellite configurations. Through

the GUI, the user not only inputs the constraints but can also access PDF files of

available resources that exist in the warehouse. The user can select specific com-

ponents for specific locations or leave their options open to evaluate a variety of

configurations. Constraints levels and interfacing with the user are discussed further

in Subsection 3.8.1.

Like PnP components, the panels can be used to create a variety of assembled

satellite structures from different sizes (small, medium, large). An approach listing

a limited variety of satellite structures assembled from those PnP plates could be

developed to assist the user in selecting a satellite structure. Mission Type and Orbit

are the two key factors that could be used determining the size of the satellite struc-

ture. An approach considering more than one satellite structure could be developed

in future work. The selection of the satellite structure could also be automated later

using a process that takes into account historical data. In this research, we did not

test this concept, rather, we assumed there is only one satellite structure to which

PnP components are attached during configuration process.

At this point, we will discuss one possible approach on how the user interface

could be developed. The purpose of this GUI is to demonstrate an approach and aid

in the testing of this constraint based approach. The logic for the GUI ensures that for

each Component type there are enough Connection Points on the satellite structure

to configure satellites. The user selects quantities for each different Component type

50



Figure 3.12: GUI-Mission and Satellite Constraints

Figure 3.13: GUI-User Component Selection by Subsystem

to configure satellites, see Figure 3.13. The user is capable of viewing the current

stock level of each Component type and can see the number of available Connection

Points for those Component types. The user selects the maximum quantity for each

Component type under the restriction of available Connection Points. The user is in-

formed if they select component quantities from which no combination can be created,

due to lack of connection locations on the selected structure or component availability

in the warehouse. Additionally, the quantity of each Component in the library has to

be equal to or smaller than the available Connection Points for that Component type

so that valid combinations can be created. The availability of Connection Points is

determined by matching attributes of each Component and Connection Point.
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3.8 Methods Developed to Create PnP Satellites

As a reminder, the italicized term Component represents entities that only exist

in the virtual library, and the term “Component” indicates a physical object in the

warehouse. A Component is the highest level of entity in the OOD that all other

entities inherits from. Components performing different functions grouped together

form Component types such as Sun Sensors, Earth Sensors, Reaction Wheels, etc, as

shown in Figure 3.14. The Availability attribute of a Component is the stock level

of real components in the warehouse that are represented by “Components in the

Library” in the same figure. The actual Sun Sensor 1 (SS1) belongs to Sun Sensor

type, and there are four Sun Sensor 1 components in the warehouse.

3.8.1 Interfacing with the User. Mission requirements, PnP components,

and satellite structures are the three major elements of the user input in this constraint-

based approach. The user must input these major elements in order to determine

Satellite, Subsystem, and Component Level Constraints.

Satellite Level Constraints consist of mission specified constraints such as mis-

sion type, mission duration, orbit, weight, cost, and reliability etc. From these user

inputs, Satellite Level Constraints are generated which will be needed to eliminate

infeasible satellite configurations. Maximum cost, maximum mass, and minimum

reliability of satellite configuration are examples of Satellite Level Constraints that

satellite configurations which violate one or more of those constraints are eliminated.

Mission type, mission duration, and orbit are the main factors in selecting a satellite

structure that houses the PnP components.

Component and Subsystem Level Constraints can be derived from Satellite Level

Constraints. For example, a propellant constraint for orbit correction, maintenance,

and attitude control can be calculated using the mission duration and orbit informa-

tion for creating a Component Level Constraint.

The SMAD approach, as discussed in Subsection 2.2.1, has methods to estimate

mass, cost, power budgets, etc. of each subsystem with respect to the entire satellite
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Figure 3.14: Component Hierarchy
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Figure 3.15: Example of a Component Level of Constraint
Being Applied

based on satellite historical data. In the same way, applying subsystem percentages to

satellite mass, weight, and cost constraints, Subsystem Level Constraints can also be

created. From Subsystem Level Constraints, Component Level Constraints can also

be generated. However, percentage estimates generated from small satellite histori-

cal data may lead to poor estimations because PnP Satellites are expected to have

components and subsystems not specifically optimized for a specific mission. Gener-

ating and applying Subsystem Level Constraints are not evaluated in this research,

but could easily be applied.

In addition to the estimated Component Level Constraints, the user inputs Com-

ponent Level Constraints manually to prevent creation of invalid configurations based

on the user’s desires. For example, if a user decides that the accuracy of sun sensor

must be higher than a specific value, they simply input an accuracy restriction as

a Component Level Constraint such that all sun sensors in the library that exceed

this constraint are not eligible for selection. Additionally, having the user select a

specific or a group of components is a Component Level Constraint that is used in

this research.

3.8.2 Selecting Valid Components. A scenario has been created to explain

and demonstrate the approach by creating a simple satellite (SimpleSat) consist-

ing of a satellite structure and a simple ADCS subsystem composed of some sensor

components like Sun Sensor (SS) and Earth Sensor (ES). The process of creating

configurations and applying constraints to SimpleSat will make the explanation of
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Figure 3.16: Example Creation of Component Combination
List (C2 List)

this approach easier to follow, because only a limited number of Components and

Location Points are used.

In the previous step, the minimum required inputs from the user collected

through a GUI and various constraints are created and applied during the config-

uration process when applicable. First, depending on the user input and attributes

of Components in the library, lists of valid Components are created. As shown in

Figure 3.15, sets of Sun Sensors (SS1, SS2 and SS3) and Earth Sensors (ES1 ES2

ES3 ES4) are created from the library. Any Component which does not meet all

the Component Level Constraints is eliminated from the list. A good example of a

Component Level Constraint being enforced is shown in Figure 3.15 where ES4 is

eliminated because the accuracy attribute of the ES4 component is not high enough

to meet the user specified Component Level Constraints for Earth Sensor Component

type.

3.8.3 Creation of the Component Combinations Lists (C2 Lists). Each

Component that meets Component Level Constraints is used to create combinations

of the desired number based on user input that specify quantities for each Component

type. Component Combinations (C2s) composed of “like” (same manufacturer and

model number) components that have same Id attribute are created, see Section 3.5.

55



For each Component type, one or more C2s are created if the user has decided to use

that Component type in the configuration. As shown in Figure 3.16, three sun sensors

and one earth sensor are selected, and C2 Lists for Earth Sensor and Sun Sensor are

created.

To minimize the size of the C2 Lists, C2 entities are only created from “like”

Components. As a future improvement, this restriction could be removed. Using

different components can provide flexility, but it also can create some drawbacks like

compatibility issues that might not be handled with simple logic. Components made

by different manufacturers are likely to have different specifications. Thus, using

different components requires more complex coding to handle differences between

components to prevent conflicts and are not considered in this research.

Another reason to not allow dissimilar components that serve the same purpose

is the number of combinations created could be extremely large, even when small

quantities and varieties of components are used. For example, assume that we have ten

sun sensors from different manufacturers, have quantities greater than three available,

and want to attach all of these components in three locations on the satellite structure.

In this case, allowing configurations that include different sun sensors would result in

103 different combinations just for possibly part of the attitude sensing capability of

the satellite. However, if only “like” components can be used, we would only have 10

different combinations.

3.8.4 Creation of Combined Component Combinations List (C3 List). To

create a subsystem configuration, we first combine the C2 Lists and then assign com-

ponent locations to those components. In the previous step, we created C2 Lists for

each Component type based on the user input. The C3 List is created by selecting C2s

from each of the C2 Lists and combining them with other C2s of different Component

types to create a subsystem where component locations will be determined later. A

C3 consists of Component Combinations (C2) from each created Component Combi-

nation List (C2 List) that defines a subsystem, as shown in Figure 3.17. The number
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Figure 3.17: Example Creation of Combined Component
Combination List (C3 List)

of C3s is directly related to number of C2s in each C2 List. For example, if we have

ten C2 choices for sun sensor component, five C2 for earth sensor components, and ten

for thruster components, the total number of options for ADCS will be 10(5)10 = 500,

refer to previous discussions on the multiplication principle in Section 3.3.

3.8.5 Removing Combinations that Violate Subsystem Level Constraints.

Each C3 in Combined Component Combination (C3) Lists describes components in a

subsystem without locations, Subsystem Level Constraints are applied to C3 Lists to

eliminate configurations in which a C3 violates any cost, weight, etc constraints. The

Satellite Level Constraints, like reliability and launch vehicle (static/dynamic enve-

lope), can only be applied after a complete satellite configuration has been created.

However, Subsystem Level Constraints can be applied in this level, as discussed Sub-

section 3.8.1. The number of satellite configurations will increase exponentially as the

number of C3s increases. Applying Subsystem Level Constraints as soon as possible

reduces the effect of combinatorial explosion in the component configurations. In the

example SimpleSat scenario, we are creating satellite configurations consisting of only
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Figure 3.18: Example of Removing Invalid Combinations De-
pends on User Constraints

ADCS subsystem to explain the approach. Therefore, Satellite Level Constraints such

as total mass and total cost can be applied as Subsystem Level Constraints only be-

cause the subsystem configuration also represents satellite configuration in this special

case. In the Figure 3.18, an example of an eliminated configuration due to exceeding

the mass and cost constraints is shown.

3.8.6 Removing Invalid Combinations that Violate Available Connection Points.

At this point, the C3 Lists have subsystem level combinations that are not valid be-

cause of lacking Connection Points on the satellite structure for components in the

combinations. As explained in Subsections 2.3.5 and 2.3.8, the user selected satellite

structure has a limited number of Connection Points. As discussed in Section 3.5,

a Connection Point can only support one Connection Type and one Orientation, on

the other hand, a Component can have more than one Orientation but only one

Connection Type.

The same type of Component may have different Connection Types as in com-

puter systems, a mouse can have either USB or DB-9 serial connector. Components

can only be attached to Connection Points of which Connection Types match. Any

particular Component for which there are not enough Connection Points available
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Figure 3.19: Example of Component and Connection Point
Properties

on the selected structure results in elimination of any C3 that includes that partic-

ular Component. For example, as shown Figure 3.19, ES3 can only be connected

to Connection Points that support a Type 3 connector and -Z orientation. On the

other hand, L7 Connection Point has a Type 3 connector, however this Connection

Point supports only a +Z orientation that makes L7 invalid for SS3. Because the

user selected satellite structure does not have the designated connector required for

ES3, C3s that have ES3 are not valid and are eliminated from C3 List as shown in

Figure 3.20.

Figure 3.20: Example of Removing Invalid Combinations that
Depend on Available Connection Points
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3.8.7 Creating C3 Location Lists. The elimination of C3s as described

in SubSection 3.8.6 ensures that there are enough Connection Points on satellite

structure. In the same way that Component Combinations (C2) are created from

components and user inputs, combinations of Connection Points for each C3 are

created from available Connection Points on the selected satellite structure.

So far, C2 Lists have been combined to form Combined Component Combina-

tions (C3s) as explained in Subsection 3.8.4. Only C2 Lists that consist of “like”

components for the user selected component quantity are allowed. For each C3, the

number of “like” components in C2 and available Connection Points are used to create

lists of combinations of C2 Locations. Different from creating C2s, these C2 Locations

Lists incorporate the requirement that Connection Points are used only once. After

creating all of the C2 Locations Lists, the C2 Locations Lists are combined to create

the C3 Location List in the same way C3 Lists are created as described in SubSection

3.8.4. The next step is to create subsystem combinations by combining the C3 List

and C3 Location Lists. An example of previously described processes is shown in

Figure 3.21.

3.8.8 Creating Subsystem and Satellite Configurations. In the previous step,

for each C3 one C3 Location List consisting of various C3 Locations is created. C3s

and C3 Location Lists are combined to create subsystem configurations. Combining

those C3s with corresponding C3 Locations create numerous subsystem configurations

if the number of available locations are higher than number of components in C3s.

From each C3 and C3 Location List, at least one subsystem configuration is created.

All of the examples given so far are only for the ADCS components. Only after

configuring other satellite subsystems like Command and Data Handling (CnDH),

Communication, Power etc. can we combine subsystems and create various satellites.

Because this research effort is focused on evaluating a new approach, only ADCS

components will be discussed.

60



Figure 3.21: Creating C3 Location Lists

3.8.9 Elimination of Satellite Configurations that Violate Satellite Constraints.

The Satellite Level Constraints like total mass, total cost, and total power can be

converted to Subsystem Level Constraints as explained in Subsection 3.8.1 and can

be applied right after C3s are created for each subsystem. However, calculations like

MOI and CM require all component locations for a complete satellite configuration

be known. Therefore, Satellite Level Constraints such as MOI, CM, Static/Dynamic

Envelope, and reliability are only applied after complete satellite configurations are

created.

3.8.10 Sorting Satellites Configurations. With a large variety of compo-

nents in the warehouse and multiple location points, especially if they are of the same

connection type, it is very likely that an exceedingly large number of satellite con-

figurations could be created from which it would be daunting for the user to decide

on the best configuration. In this section, we look at different ways to find the best

configuration that satisfies the users need from possibly thousands to millions of valid
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combinations. Because the user may want the lowest mass or least expensive satellite

configuration that meets the mission requirement constraints, a sorted list can help.

The user should be able to sort based on criteria such as weight, cost, size or com-

binations of these variables and possibly with corresponding weightings when more

than one criteria is desired.

Additionally, flight history of components may be a determining factor in se-

lecting specific components. Satellite configurations may be sorted according to the

number or percentage of components that have a good record of space qualification

and possibly success in a particular configuration to allow user to find the most reliable

configurations.

In our research, we also found that sorting satellite configurations resulted in

large numbers of configurations being grouped together. For example, sorting by cost

we found that the ten least expensive configurations were nearly identical. Therefore,

we evaluated a modification of our sorting approach. When satellite configurations

are created from a fixed set of known components, some satellites may be very similar

to each other. Likewise, there are components in the library having very similar

specifications that may result in creating “nearly identical” satellite configurations.

An approach of normalizing the attributes of the satellite and eliminating “nearly

identical” satellite configurations can significantly reduce the number of configurations

from which the user can select from.

Figure 3.22 displays 4800 satellite configurations based on their reliability, weight

and cost. Each dot represents a satellite configuration, and the encircled dots repre-

sent dissimilar satellite configurations based on the user “criteria” input. The “crite-

ria” is a measure of distance (as defined below) between configurations, and its value

ranges between 0 and 1.

Before a measure of distance between configurations can be determined, the

Cost, Weight and Reliability attributes of satellites must be normalized into a range

of 0 and 1. Normalization is required to provide equal weighting between satellite
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Figure 3.22: Example of Selection of Satellites Based on Re-
liability, Cost and Weight Criteria

attributes when determining the similarity of two satellites, if equal weighting is de-

sired. The following equation is used to calculate a normalized value between 0 and

1 from a set of data {d1, d1, d2, d3...dn}

δ =
d − dmin

dmax − dmin

(3.9)

where δ is the normalized value, d is the value to be normalized, dmin and dmax are

the minimum and maximum values in the set of data, respectively.

Representing satellite configurations as points in three dimensional space using

mass, cost and reliability properties and estimating the distance between two satellite

can be calculated using the Euclidean norm

d = |x − y| =

√√√√
n∑

i=1

|xi − yi|2 (3.10)
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where d is the distance between points x and y in Euclidean n-space of reals also

written as R
n [10].

For example, we can estimate the similarity of two satellite P and Q, where

P = (px, py, pz) and Q = (qx, qy, qz) with attributes of mass, cost, and reliability from

d =
√

(px − qx)2 + (py − qy)2 + (pz − qz)2 (3.11)

where d can be thought of as a measure of similarity between the two satellites.

Similar satellites have the same or close values of d.
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IV. Results and Analysis

Several test scenarios were created to analyze the approach developed in this research

by evaluating the effect of various constraints in reducing the number of satellite

configurations created. In the first section of this chapter, the correlation between

the number of components and the number of configurations created is demonstrated,

and the effect of applying various constraints to number of component configurations is

discussed. In the second section, results of the “constraint based” approach developed

to minimize “combinatorial explosion” when creating PnP satellites is discussed.

4.1 Creating Component Configurations

The purpose of this section is to demonstrate different cases in which small

numbers of Components and Connection Points can result in very large numbers of

configurations. Then, by applying a constraint based approach, we reduce the number

of configurations to assist the user in rapidly finding configurations that satisfies user’s

needs in priority order. In this section, only one Component type will be used to create

configurations, and in subsequent steps, new constraints will be introduced resulting

in a cumulative effect on the total number of valid configurations. We assume only

ten sun sensors are available in the warehouse. The applied constraints and resulting

number of available locations on the satellite structures are presented in the tables.

4.1.1 Configurations Created Using “various” Components. As explained

in Subsection 3.3, numerous combinations can be created from only a few Compo-

nents and Connection Points in the virtual repository if we allow combinations to

have mixed Components, as opposed to “like” components. For example, in a sce-

nario where we want to create configurations composed of five Components from a

selection of ten Components and nine Connection Points, we can create 16.8 million

configurations, using Equations (3.6) and (3.4). As explained in Section 3.8, we first

create Component Combinations (C2) and then C2 Location configurations from C2s

to allocate locations to components. As summarized in Table 4.1, different from the

method created in this approach, various Component types are used to create Com-
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Table 4.1: Scenario Created for Using “various” Com-
ponents to Create Configurations

Component Level Constraints no
Availability Constraints no
Connection Type Constraints no
Orientation Constraints no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 10 9

ponent combinations (C2) to demonstrate the effect of using various components in

configurations. No constraints such as Connection Type, Orientation etc. are applied.

In the case of using various components in configurations, the number of created Com-

ponent combinations is extremely large when compared to the number of Component

configurations created using an approach that uses “like” Component only.

Table 4.2: Sample of 21 of 70 Sun Sensor Combinations

SS1 SS1 SS1 SS1
SS1 SS1 SS1 SS2
SS1 SS1 SS1 SS3
SS1 SS1 SS1 SS4
SS1 SS1 SS1 SS5
SS1 SS1 SS2 SS2
SS1 SS1 SS2 SS3
. . . . . . . . . . . .

SS1 SS2 SS4 SS5
SS1 SS2 SS5 SS5
SS1 SS3 SS3 SS3
SS1 SS3 SS3 SS4
SS1 SS3 SS3 SS5
SS1 SS3 SS4 SS4
SS1 SS3 SS4 SS5
. . . . . . . . . . . .

SS2 SS3 SS3 SS4
SS2 SS3 SS3 SS5
SS2 SS3 SS4 SS4
SS2 SS3 SS4 SS5
SS2 SS3 SS5 SS5
SS2 SS4 SS4 SS4
SS2 SS4 SS4 SS5
. . . . . . . . . . . .

Table 4.3: Configurations Created from 5
“like” Components using 4 at a time

SS1 SS1 SS1 SS1
SS2 SS2 SS2 SS2
SS3 SS3 SS3 SS3

SS4 SS4 SS4 SS4
SS5 SS5 SS5 SS5

To demonstrate the effect of using various Component on the number of Com-

ponent combinations, a sample of 21 C2s of total 70 combinations, see Equation (3.5),

created from 5 various Component (SS1, SS2, SS3, SS4, SS5) for 4 Connection Points

(L1, L2, L3, L4) is shown in Table 4.2. The large difference, 70 versus 5, in the
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number of Component combinations can clearly be seen when we compare Tables 4.3

and 4.2. Because we chose to use various Components of different brand or specifi-

cations to create configurations, the number of end configurations increases with the

number of Components selected, as seen in Figure 4.1. The number of Component

combinations and Component locations for each Component combination determine

the total number of configurations. Figure 4.1 illustrates the growth in the number of

configurations increases approximately as a function of n! as seen in Equation (3.5)

as the number of selected Components n increases.

The number of configurations created is many millions which makes it almost

impossible to manage because the user would be overwhelmed trying to determine

which configuration to choose. Creating configurations by combining various Compo-

nents is not considered a good approach to follow because of the factorial increase of

the high number of configurations and more importantly the complexity of handling

components with different brands and specifications.
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Figure 4.1: Number of Configurations versus Number of Se-
lected Components where there are 10 available Components
and 9 Connection Points
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4.1.2 Configurations Created Using “like” Components. In previous subsec-

tion we discussed the effect of not having the restriction of allowing “like” Components

only. This subsection will discuss the effect of using “like” Components which results

in a more manageable number of configurations. We conclude that allowing only

“like” Components as a restriction is a better methodology than allowing “various”

Components to follow.

By only allowing “like” Components, the number of end configurations reduces

from millions to a more manageable tens of thousands for the scenario given in Sub-

section 4.1.1. Component combinations from five Components is shown in Table 4.3.

Comparing Tables 4.3 and 4.2, we can see that there are 65 more Component combi-

nations created when various Components are used in configurations. In the approach

that we created in this research, the number of Component combinations does not

change as the number of selected Components increases. The number of Component

combinations is fixed and equals to the number of Components in the warehouse be-

cause only “like” Component combinations are allowed. A scenario created to test

this is shown in Table 4.4. In the scenario, 10 “different” types of sun sensors and

16 locations are available to create configurations. The number of configurations

from 10 sun sensors and 16 locations as the number of selected Components increases

is demonstrated in Figure 4.2. Because the number of Component combinations is

fixed, the number of Component locations is the key variable that determines the

number of total configurations. In this case, the number of Component locations can

be calculated using Equation (3.4). This calculation results in the number of satellite

configurations being bounded, as shown in Figure 4.2.

In following subsections, we will introduce constraints to the previous scenario

and discuss the effect of constraints on the created configurations.

4.1.3 Reduction in Configurations Due to Applying Component Level Con-

straints. As discussed in Subsection 3.8.2, any Component that does not meet

the Component Level Constraints is eliminated. We assume two sun sensors in the
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Table 4.4: Scenario Created for Using “like” Compo-
nents to Create Configurations

Availability Constraints no
Connection Type Constraints no
Orientation Constraints no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 10 16
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Figure 4.2: Configurations Created Using “like” Components

warehouse have accuracy values lower than user’s accuracy constraint. Therefore,

two Components are eliminated by this Component Level Constraint and the num-

ber of available Components in the warehouse for configuration decreases from ten

to eight, see Table 4.5. The number of Component locations did not change for each

component combination. However, because the number of Component combinations

decreases, the total number of configuration also decreases, respectively. Additionally,

as the number of Component Level Constraints increases, there is a resulting decrease

in the number of the configurations because more Components become invalid for
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configuration and are eliminated. In Figure 4.3, the result of reduction in the num-

ber of component configuration with regard to number of Components used in the

configurations is shown. The maximum number of configuration decreased from 64

thousand to 50 thousand when we apply Component Level Constraints as described in

the previous scenario. Because the number of Component combinations is fixed, the

number of Component locations still has a driving effect on determining the number

of total configurations that can be calculated using Equation (3.4).
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Figure 4.3: Configurations Created Component Level Con-
straints Applied

4.1.4 Reduction in Configurations Due to Applying Availability Constraint.

In previous sections, we discussed that the created Component configurations are

fixed and assumed there is an unlimited quantity of components in the warehouse.

However, limiting quantities in the warehouse will constrain the resulting number of

configurations.

In the scenario summarized in the Table 4.6, each Component has limited a

quantity which varies between 1 to 9 (inclusive). The quantities of the Components

70



Table 4.5: Scenario Created for Applying Component
Level Constraints to Create Configurations

Component Level Constraints yes
Availability Constraints no
Connection Type Constraints no
Orientation Constraints no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 8 16

are determined by Gaussian probability distribution function (PDF) that was ex-

plained in Section 3.2. Because there are no component of a quantities of ten, no

configuration composed of ten components is created, see Figure 4.4. In this case,

the number of Component combinations is not fixed as the number of selected Com-

ponents increases because the availability of components is limited. If the number of

Component combinations was fixed, the number of locations would govern the total

number of configurations and Figure 4.4 would peak when the number of selected

Component is eight. As seen in the same figure, the number of configurations reaches

its peak value when the number of selected components is six because there are not

Components quantities higher than six in the virtual warehouse. The number of

Component locations still depends on the selected number of Components (1-9) and

available locations (16). Even though the number of Component configurations varies,

the total number of configurations decreases as number of selected Components comes

closer to the number of available locations.

From Figure 4.4, we can see that the maximum number of configurations de-

creases from 50 to 20 thousand. Because we have limited the number of available

components, the user can not change the availability of a components directly but

can become aware of this constraint through a GUI as discussed in Section 3.7.

4.1.5 Reduction in Configurations Due to Applying Connection Type Con-

straints. In previous subsection, we still had a maximum of 20 thousand con-
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Figure 4.4: Configurations Created Availability Constraints
Applied

figurations from only 8 Components and 16 Component locations. The main reason

for the large number is that having too many component locations for components

to be connected, in other words, there is only one Connection Type and any Com-

ponent can be assigned to any Connection Point. Therefore, Connection Points on

which components can be connected to will be enforced, or in other words, not ev-

ery Connection Point is valid for all components. The Connection Type attributes

of Components creates a constraint on the number of available Component locations

that can be associated with specific Component. In the scenario summarized in Table

4.7, some of the Connection Points for the Components are eliminated due to the

previously discussed constraints on Connection Type attributes of the Components

and Connection Points, which was also explained in Section 3.5. Of the 16 Connec-

tion Points on the satellite structure, only 12 of them are designated for Sun Sensors.

Because the number of end configurations is directly related to the Connection Points

combinations, the maximum number of configurations is decreased significantly from
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Table 4.6: Scenario Created for Applying Availability
Constraints to Create Configurations

Component Level Constraints yes
Availability Constraints yes
Connection Type Constraints no
Orientation Constraints no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 8 16

20 to 2 thousand as shown in Figure 4.5. Just this simple limitation on the type of

components that can be connected to a given location helps us considerably reduce

the number of end configurations to manageable levels.
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Figure 4.5: Number of Configurations Created Connection
Type Constraints Applied

4.1.6 Reduction in Configurations Due to Applying Orientation Constraints.

In addition to Connection Type Constraints, Orientation Constraints are also created

and tested. Each Component type has Orientation attributes based on their func-
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Table 4.7: Scenario Created for Applying Connection
Type Constraints to Create Configurations

Component Level Constraints yes
Availability Constraints yes
Connection Type Constraints yes
Orientation Constraints no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 8 12

Table 4.8: Scenario Created for Applying Orientation
Constraints to Create Configurations

Component Level Constraints yes
Availability Constraints yes
Connection Type Constraints yes
Orientation Constraints yes
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 8 7

tion and operating environment as explained in Section 3.5. Applying Orientation

Constraints results in the elimination of Connection Points that result in a reduc-

tion in the number of available Connection Points. In the scenario summarized in

Table 4.8, there are only seven valid Connection Points for Components. The Fig-

ure 4.6 shows the number of configurations created after orientation constraints are

applied. The number of components selected can not be higher than available number

of Connection Points that is seven as seen in the Figure 4.6. The maximum number

of configurations decreased from two thousand to two hundred. Applying Orienta-

tion Constraints with the Connection Type Constraint decreases the total number of

configurations significantly.

4.2 Combinatorial Reduction of Number of Satellite Configurations

In the previous Section, we focused on configurations created from a single

type of component. In order to demonstrate the capability of the overall approach,
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Figure 4.6: Configurations Created Orientation Constraints
Applied

various scenarios are created and summarized in Tables 4.9 through 4.15. When all

required components are used to create PnP Satellite, the number of configurations

created without applying constraints is larger than several billion. Therefore, to

keep the number of configurations at an manageable level, only some of the PnP

Satellite components such as the sun sensors, earth sensors, thrusters, payloads, and

reaction wheels are selected. The numbers of selected components is 4, 1, 4, 2,

and 3, respectively. The valid number of Components in the virtual warehouse and

Connection Points on the satellite structure were chosen arbitrarily. Each scenario

has new applied constraints and the effect of those applied constraints on the number

of valid Components and Connection Points is highlighted in the tables. The outcome

of the applied constraints are shown as a number of satellite configurations at the end

of the tables.

In the scenario depicted in Table 4.9, no constraints are applied when configuring

satellites. There are 16 available Connection Points designated to all Component
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types in the configurations. The total number of configurations created is extremely

large when no constraints are applied as represented in the same table.

In the scenario depicted in Table 4.10, only Component Level Constraints are

applied (see Section 3.7). As a result of applying Component Level Constraints, two

sun sensors, two reaction wheels, and one payload are eliminated. The number of

configurations decreases by almost 50% when compared to the previous scenario. More

user constraints, like Component Level Constraints, results in a significant decrease in

the number of satellite configurations. Component Level Constraints by themselves

can not decrease the total number of combinations to a manageable number because

of the numerous components in warehouse.

In the scenario depicted in Table 4.11, Availability Constraints are applied as

discussed in Subsection 4.1.4. As a result of applying Availability Constraints, two sun

sensors and three reaction wheels are eliminated. The total number of configurations

decreases almost 50% when compared to the previous scenario. Overall, applying both

the Availability Constraints and Component Level Constraints still can not decrease

the total number of combinations to a manageable number.

In the scenario depicted in Table 4.12, Connection Type Constraints are applied

as discussed in Section 3.5. As a result of applying Connection Type Constraints,

components are allowed to be attached only to designated locations on the satellite

structure. As shown in the Table 4.12, the available Connection Points for compo-

nents decreases significantly. Notice that the sum of available Connection Points for

Components is 16. The total number of configurations decreases from 3.6 trillion to

18 thousand when we apply Connection Type Constraints.

In the scenario depicted in Table 4.13, Orientation Constraints are applied

as discussed in Section 3.5. As a result of applying Orientation Constraints, the

number of designated locations on the satellite structure for earth sensor and payload

decreases to 1 and 2, respectively. The total number of configurations decreased from

18 thousand to 3 thousand when we apply these example Orientation Constraints.
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Table 4.9: Satellite Configurations Created by Introducing no
Constraint

Component Level Constraints no
Availability Constraints no
Connection Type Constraints no
Orientation Constraints no
Satellite Level Constraints no
Similar Configuration Elimination no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 10 16
Earth Sensor 5 16
Thruster 4 16
Payload 5 16
Reaction Wheel 10 16
Number of Satellite Configurations 1.51351E+13

Table 4.10: Satellite Configurations Created by Introducing
Component Level Constraints

Component Level Constraints yes
Availability Constraints no
Connection Type Constraints no
Orientation Constraints no
Satellite Level Constraints no
Similar Configuration Elimination no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 8 16
Earth Sensor 5 16
Thruster 4 16
Payload 4 16
Reaction Wheel 8 16
Number of Satellite Configurations 7.74918E+12
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Table 4.11: Satellite Configurations Created by Introducing
Availability Constraints

Component Level Constraints yes
Availability Constraints yes
Connection Type Constraints no
Orientation Constraints no
Satellite Level Constraints no
Similar Configuration Elimination no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 6 16
Earth Sensor 5 16
Thruster 4 16
Payload 4 16
Reaction Wheel 5 16
Number of Satellite Configurations 3.63243E+12

Table 4.12: Satellite Configurations Created by Introducing
Connection Type Constraints

Component Level Constraints yes
Availability Constraints yes
Connection Type Constraints yes
Orientation Constraints no
Satellite Level Constraints no
Similar Configuration Elimination no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 6 4
Earth Sensor 5 2
Thruster 4 4
Payload 4 3
Reaction Wheel 5 3
Number of Satellite Configurations 18000

78



Table 4.13: Satellite Configurations Created by Introducing
Orientation Constraints

Component Level Constraints yes
Availability Constraints yes
Connection Type Constraints yes
Orientation Constraints yes
Satellite Level Constraints no
Similar Configuration Elimination no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 6 4
Earth Sensor 5 1
Thruster 4 4
Payload 4 2
Reaction Wheel 5 3
Number of Satellite Configurations 3000

In the scenario depicted in Table 4.14, satellite configurations whose total weight

is larger than 60 kg and cost is higher than $160,000 are eliminated. The area bounded

in the lower left hand corner by dashed line in Figure 4.7 contains valid satellite

configurations based on the Satellite Level Constraints where each “+” represents a

valid configuration.

In the scenario depicted in Table 4.15, satellite configurations are selected based

on the distance criteria 0.08 to reduce the number of satellite to manageable levels

as explained in Subsection 3.8.9 and computed from Equation (3.10). The selected

satellite configurations are encircled based on the summarized scenario in Table 4.15.

The end number of configurations is decreased from hundreds to tens making it a

more manageable number of satellite configurations.

Figure 4.9 shows the case specific overall combinatorial reduction in the num-

ber of satellite configurations based on the different constraints and methods. Case

numbers 1 to 7 represent previously discussed scenarios as summarized in Tables 4.9

through 4.15. The most significant decrease in the number of satellite configurations

occurs in Case 4 which is application of Connection Type constraints. The number
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Table 4.14: Satellite Configurations Created by Introducing
Satellite Level Constraint

Component Level Constraints yes
Availability Constraints yes
Connection Type Constraints yes
Orientation Constraints yes
Satellite Level Constraints yes
Similar Configuration Elimination no
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 6 4
Earth Sensor 5 1
Thruster 4 4
Payload 4 2
Reaction Wheel 5 3
Number of Satellite Configurations 431

of end configurations decreases from several millions to tens by the approach created

from this research.
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Figure 4.7: Satellite Configurations with Satellite Constraints

Table 4.15: Satellite Configurations Created by Introducing
Similar Configuration Elimination Method

Component Level Constraints yes
Availability Constraints yes
Connection Type Constraints yes
Orientation Constraints yes
Satellite Level Constraints yes
Similar Configuration Elimination yes (criteria = 0.08)
Components Number of Compo-

nents in Warehouse
Number of available
Connection Points

Sun Sensor 6 4
Earth Sensor 5 1
Thruster 4 4
Payload 4 2
Reaction Wheel 5 3
Number of Satellite Configurations 39
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Figure 4.9: Elimination of Satellite Configurations
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V. Conclusions and Future Work

Although there are numerous ways tackle the problem of creating the best way to de-

sign satellites, we believe that this research effort provides an important contribution

in evaluating a “constraint based” approach in configuring PnP satellites. This work

has shown that satellite configurations created from PnP components can result in

very large numbers of configurations, but they can be reduced to manageable numbers

by applying constraints early in the configuration process.

5.1 Conclusions

Most of the approaches explained in Chapter II support the rapid development

of only one satellite system by helping developers reduce the time and effort spent

on each design phase. In these previously explained approaches, most satellites are

created from existing satellite components which are not PnP and the design process

requires close iterative user interaction with the software tools. By using a constraint

based approach, the “automatic” configuration process of PnP components results in

the ability to evaluate a wide variety of satellite configurations quickly.

One key aspect of this approach is reducing the computational costs by excluding

components and/or component combinations which don’t meet the requirements “as

soon as possible” in the process. User defined constraints are applied whenever it is

applicable to minimize the effect of “state explosion” -a condition of extraordinarily

large numbers of configurations typically caused by a wide variety of components

and locations- in creating satellite configurations and wasted computational cycles.

Both connection type and orientation attributes of components creates constraints

on the number of components that must agree with an associated connection point

constraints. Therefore, the magnitude of the “state explosion” can be significantly

decreased as more constraints are applied.

Another key aspect of this approach is not allowing using “various” (different

brand and model) components that perform the same function. Only allowing “like”

(same brand and model) component combinations results in ease in coding in order
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to handle differences and conflicts between components. Creating PnP component

configurations from only “like” PnP components also reduces the complexity and

number of satellite configurations. The number of configurations created can easily

be in the millions from only a few components and locations which makes it almost

impossible to manage due to limited time, computational resources and the user could

be overwhelmed trying to determine which configuration to choose. Creating config-

urations by combining various components is not considered a good methodology

to follow because of the exponential increase in the large number of configurations

and, more importantly, complexity of handling components with different brands and

specifications.

Components and locations of components on the satellite together compose

a PnP satellite. In this research, to create combinations of components and their

locations we first selected the components and then created component locations with

different “orders” for those selected components. Locations with different “order”

creates different satellite configurations from same components. Another approach

could be created by creating component combinations with different “orders” and

then assign those components to selected locations. However, the second approach is

not recommended because, there will be thousands of components in the warehouse,

and creating component combinations regarding the “order” of components creates

extremely large combinations to be evaluated.

Different from conventional satellite design methods, we assumed that all com-

ponents are prefabricated, tested, and validated beforehand, so that satellite creators

don’t spend time validating every component/subsytem when they are needed. It’s

the components and locations of components on the satellite together that really de-

fine how PnP satellites are configured. In this research, to create combinations of

components and their locations we first select the components and then component

locations with different “orders” for those selected components. The locations with

different “order” creates different satellite configurations from the same components.
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When satellite configurations are created from a fixed set of known components,

some satellites may be very similar to each other. It is very likely that some compo-

nents with similar properties and different stock numbers will exist in the warehouse.

The components in the library having very similar specifications that may result in

creating “nearly identical” satellite configurations. In this research, each satellite con-

figuration is saved to a database and various configurations are sorted based on cost

or weight. An approach of normalizing the attributes of the satellite and eliminat-

ing “nearly identical” satellite configurations can significantly reduce the number of

satellite configurations that user can select from.

In the end, we created a data structure that accommodates different properties

of PnP components, satellite structures, and configured satellites by combining OOD

and satellite subsystem hierarchy. Having different attributes at different levels in

the system makes coding and calculations easier because it hides the complexity of

data structure in different levels. This approach, if applied correctly, should result

in a manageable methodology of designing PnP satellites, especially if the bulk of

computations are performed beforehand. Overall, if this approach is implemented in

a commercial code, the followings features are recommended:

1. Apply constraints as soon as possible during the configuration process, especially

if the user knows they want a specific component at a particular location.

2. Implement user friendly GUIs to compliment the data gathering and user adop-

tion.

3. Provide a 3D Viewer to allow users to visualize satellite configurations.

4. Designate location types for components with different functionalities.

5. Present results in a way that allows users to sort satellite configurations based

on weight, cost, reliability and space qualification of components.

6. Remove “similar” satellite configurations in the end satellite configurations.
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5.2 Recommendations for Future Work

The future integration environment of PnP satellites will be composed of thou-

sands of PnP components and their software components. Current satellite design

approaches rely heavily on manual configuration methods of which developers are ex-

tremely involved in each step, moreover rapidly configuration of satellites composed

of thousands of components is not possible with current approaches. Even from

small numbers of components and connection points, a very large number of satellite

configurations can be created. Quickly figuring out which components and overall

configuration best satisfies the user’s constraints, like cost, weight, size, or life span,

is very difficult because of complexity of satellite subsystems, numerous of available

component choices, limited budged, high reliability requirement of space assets etc.

Manufacturing satellites to meet the short time line requirement of ORS requires PnP

components to be used. However, satellite developers by themselves are not capable

of evaluating all possible configurations in a design space full of PnP components

with different attributes and interfaces. This research effort represents the first step

for rapidly configuring PnP satellites from PnP components and some suggestions to

improve this approaches are given below.

In order to minimize the number of satellite configurations to manageable num-

bers, various constraints are derived from the user inputs at different levels of the

configuration process. User inputs might be very general information such as mission

type, mission duration or very specific such as the selection of a particular component

that is determined beforehand to be used in the configurations. The more inputs re-

lated to mission and PnP satellite, the more constraints can be created and it might

be possible to reduce the number of PnP satellite configurations to the manageable

numbers. It is very possible to add new constraints at different levels in the PnP

satellite configuration process to eliminate more satellite configurations before they

are created. The user input list presented in this research is not complete and more

inputs can be introduced to this approach. The more detailed inputs given by the user
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results in more constraints that can be applied which typically result in a significant

decrease in the number of satellite configurations.

In this approach, we used “like” components to create configurations. As a

future improvement, this restriction could be removed for certain type of components.

Using different components can provide flexility to configure satellites, but it also

can create some drawbacks like compatibility issues that may not be handled with

simple logic. Components made by different manufacturers are likely to have different

specifications. Thus, using different components requires more complex coding to

handle differences between components to prevent conflicts. As discussed in this

research, the number of created satellite configurations can be extremely large in the

case of allowing using various components. We think that this approach would be

best used to create a database of all satellite configurations beforehand from which

various programs evaluate those configurations for user selection.

Typically, satellite systems are complex and estimating performance charac-

teristics of satellite is not a simple process because of the interconnection between

the components. In this research, all components are assumed “distinct” meaning

the presence of one component has no effect on other components. However, cer-

tain components may require other components to be present in a configurations or

components meeting a requirement by itself, may not meet the requirements, for ex-

ample when they are assembled together with other components. On the contrary,

there exists sophisticated components that can provide functions that only a group

of components can provide together. Using such high tech or multi-function com-

ponents requires redundant components to be eliminated, otherwise function conflict

between the components may be inevitable. In this case, a component dependencies

matrix could be created and utilized at both the satellite and subsystem level. It

is anticipated that PnP component technologies will offer more standardization in

components. An approach is needed to manage dependencies between components in

a satellite configuration when the industry standards are well established.
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The SMAD approach as discussed in Section 2.2 has methods to estimate of

mass, cost, and power budgets etc. of each subsystem or component with respect

to the entire satellite based on satellite historical data. Those estimations can be

used as constraints to eliminate invalid configurations before satellite configurations

are created. However, percentage estimates generated from today’s small satellite

historical data may lead to poor estimations because PnP Satellites are expected to

have different subsystems and component than currently exists. Therefore, a study on

PnP components and their attributes such as mass, volume, cost, and reliability based

on historical data and industry trend to create an database could be very beneficial.

Flight history of components may be a determining factor for the user in se-

lecting specific components. Satellite configurations may be sorted according to the

number or percentage of components that have acceptable records of flight and quite

possibly the success in a given configuration to allow user to design the most reliable

configuration. This approach can be enhanced by adding an capability that helps

users to sort or eliminate satellite configurations based on their components’ space

qualifications.

In the developed approach, we assumed there is one satellite structure which is

selected depending on the mission type and orbit for PnP components to be attached

during configuration process. Like PnP components, a variety (small, medium, large)

of panels can be used to create various satellite structures. An approach listing a lim-

ited variety of satellite structures assembled from those PnP panels could easily be

developed to assist the user in selecting the appropriate satellite structure. The selec-

tion of satellite structure could also be automated later using a process that takes into

account historical data. Mission type, mission duration, orbit, and available booster

are other key factors that could be used determining the size of the satellite structure.

This approach could also create all possible satellite structures from existing panels

and determine the connection points on the panels.
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When attaching components to a satellite structure, it is likely that the different

size of components could overlap or conflict with each other if we don’t consider the

dimension of the components. Each satellite structure could have fixed number of

specific connection points on the panels of the structure with a fixed distance between

connection points, and the distances could be computed from the largest dimensions

of different type of component. Each component could have designated connection

locations on the satellite structure that does not let components to overlap.

PnP satellites will play a fundamental role in making space more responsive. In

the space industry, most satellites are designed to perform space missions which are

driven by non-PnP payloads using iterative processes. On the other hand, technologies

such as computing power and micro electronics have advanced significantly resulting

in increasingly capable payloads that can be fit onto smaller spacecraft. Utilization

of PnP technology and an approach like the one presented in this research effort will

allow developers to reduce time spent on simple details to free up time for working

on the important other challenges to meet the goals of ORS.
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Appendix A. Java Code

Listing A.1: Calculation of Mean and Standard Deviation Method
1 public static double [] calculateMeanandStandartDeviation(double [] ...

data){
int n = data.length;
double ave = 0.0;
for(int j = 0; j < n; j++){ ave += data[j];}

ave /= n;
6 double variance = 0.0;

double ep = 0.0;
double s = 0.0;
for(int j=0; j<n; j++){

s = data[j] - ave;
11 ep += s;

variance += s*s;
}
variance = (variance - (ep*ep)/n)/(n-1);
double [] rslt = {ave ,Math.sqrt(variance)};

16 return rslt;
}

Listing A.2: Generation of Gaussian PDF Values Method
public static double createRandomNormalDistNum(double mean , double...

stdev , int decimal ,int division) {

3 Random rnd = new Random ();
double number = mean + (stdev/division) * rnd.nextGaussian ();
number = (int) (number * Math.pow(10, decimal) ) / Math.pow...

(10, decimal);
return number;

}
8 }

Listing A.3: Component Class
package satkan.persistant;

2
public class Component {

public Component (){};
public Component(String Id,String [] region ,String ...

connectionType ,double mass ,
7 double cost ,double reliability ,int availability ,double...

[] lwh){
this.Id = Id ;
this.orientation = region;
this.connectionType = connectionType;
this.reliability = reliability;

12 this.cost = cost;
this.mass = mass;
this.availability = availability;
this.dimension = lwh; //lwh
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}
17

public String getId () {
return Id;

}

22 public String [] getRegion () {
return orientation;

}

public String getConnectionType () {
27 return connectionType;

}
public double getMass () {

return mass;
}

32 public double getCost () {
return cost;

}
public int getAvailability () {

return availability;
37 }

public double getReliabiltiy () {
return reliability;

}

42 public void set_connectionType(String newType) {
this.connectionType = newType;

}
public void set_orientation(String [] newType) {

this.orientation = newType;
47 }

public void set_availabilit(int availability) {
this.availability = availability;

}

52 public String Id;
public String [] orientation;
public String connectionType;
public double mass;
public double cost;

57 public double reliability;
public int availability;
public double [] dimension;

62 }

Listing A.4: Attitude and Determination Control Subsystem Class
package satkan.persistant;

3 /**
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*ADCS Attittude Determination Control System Components
*Other names:
*ACS(Attitude Control System)
*GN&C(Guidancd ,Navigation & Control System)

8 */
public class ADCS extends Component implements satkan.Momentable {

public ADCS() {}
public ADCS(String Id, String [] region , String connectionType ,...

double [] cg, double mass , double [] localInertiaTensor , ...
double cost , double reliability , int availability , double []...
lwh) {

13 super(Id, region , connectionType , mass , cost , reliability ,...
availability , lwh);

this.cg = cg;
this.localInertiaTensor = localInertiaTensor;

}
private double [] cg = new double [3];

18 private double [] localInertiaTensor = new double [3];

public double [] get_cg () {
return this.cg;

}
23

public double get_mass () {
return this.mass;

}

28 public double [] get_localInertiaTensor () {
return this.localInertiaTensor;

}

public void set_localInertiaTensor(double [] localInertiaTensor...
) {

33 this.localInertiaTensor = localInertiaTensor;
}

public void set_Id(String Id) {
this.Id = Id;

38 }

public void set_mass(double mass) {
this.mass = mass;

}
43

public String get_id () {
return this.Id;

}
}

Listing A.5: Sun Sensor Class
package satkan.persistant;
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3 public class SunSensor extends AttitudeSensor{

public SunSensor () {} ;
public SunSensor(String Id,String [] region ,String ...

connectionType ,double [] cg ,
double mass ,double [] localInertiaTensor ,double cost ,...

double reliability ,int availability ,
8 double accuracy ,double [] lwh){

super(Id ,region ,connectionType ,cg ,mass ,localInertiaTensor ,cost...
,reliability ,availability ,accuracy ,lwh);

}
}

Listing A.6: Earth Sensor Class
package satkan.persistant;

public class EarthSensor extends AttitudeSensor{
4

public EarthSensor () {} ;
public EarthSensor(String Id,String [] region ,String ...

connectionType ,double [] cg ,
double mass ,double [] localInertiaTensor ,double cost ,...

double reliability ,int availability ,
double accuracy ,double [] lwh){

9 super(Id ,region ,connectionType ,cg ,mass ,localInertiaTensor ,cost...
,reliability , availability , accuracy ,lwh);

}
}

Listing A.7: Star Sensor Class
package satkan.persistant;

public class StarSensor extends AttitudeSensor {
4

public StarSensor () {} ;
public StarSensor (String Id,String [] region ,String ...

connectionType ,double [] cg ,
double mass ,double [] localInertiaTensor ,double cost ,...

double reliability ,int availability ,
double accuracy ,double [] lwh){

9 super(Id ,region ,connectionType ,cg ,mass ,localInertiaTensor ,cost...
,reliability ,availability ,accuracy ,lwh);

}
}

Listing A.8: Magnetometer Class
package satkan.persistant;

3 public class Magnetometer extends AttitudeSensor {
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public Magnetometer (){};

public Magnetometer (String Id,String [] region ,String ...
connectionType ,double [] cg ,

double mass ,double [] localInertiaTensor ,double cost ,...
double reliability ,int availability ,

8 double accuracy ,double [] lwh){
super(Id ,region ,connectionType ,cg ,mass ,localInertiaTensor ,cost...

,reliability ,availability ,accuracy ,lwh);
}

}

Listing A.9: Gyroscope Class
package satkan.persistant;

public class Gyroscope extends AttitudeSensor {
4

public Gyroscope () {
}

public Gyroscope(String Id, String [] region , String ...
connectionType , double [] cg , double mass , double [] ...
localInertiaTensor , double cost , double reliability , int ...
availability , double accuracy , double [] lwh) {

9 super(Id, region , connectionType , cg , mass , ...
localInertiaTensor , cost , reliability , availability , ...
accuracy , lwh);

}
}

Listing A.10: GPS Class
package satkan.persistant;

public class Gps extends AttitudeSensor {
4 public Gps() {} ;

public Gps(String Id ,String [] region ,String connectionType ,...
double [] cg ,

double mass ,double [] localInertiaTensor ,double cost ,double ...
reliability ,int availability , double accuracy ,double [] ...
lwh){

super(Id ,region ,connectionType ,cg ,mass ,localInertiaTensor ,cost...
,reliability ,availability ,accuracy ,lwh);

9 }
}

Listing A.11: Inertial Sensor Class
package satkan.persistant;

public class InertialSensor extends AttitudeSensor {
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5 public InertialSensor () {
}

public InertialSensor(String Id, String [] region , String ...
connectionType , double [] cg , double mass , double [] ...
localInertiaTensor , double cost , double reliability , int ...
availability , double accuracy , double [] lwh) {
super(Id, region , connectionType , cg , mass , ...

localInertiaTensor , cost , reliability , availability , ...
accuracy , lwh);

10 }
}

Listing A.12: Reaction Wheel Class
package satkan.persistant;

public class ReactionWheel extends AttitudeActuator{
4 public ReactionWheel () {} ;

public ReactionWheel(String Id,String [] region ,String ...
connectionType ,double [] cg ,
double mass ,double [] localInertiaTensor ,double cost ,...

double reliability ,int availability ,
double torque ,double [] lwh){

super(Id ,region ,connectionType ,cg ,mass ,localInertiaTensor ,cost...
,reliability ,availability ,torque ,lwh);

9 }
}

Listing A.13: Thruster Class
package satkan.persistant;

public class Thruster extends AttitudeActuator {
public Thruster () {} ;

5 public Thruster(String Id,String [] region ,String ...
connectionType ,double [] cg ,
double mass ,double [] localInertiaTensor ,double cost ,...

double reliability ,int availability ,
double torque ,double [] lwh){

super(Id ,region ,connectionType ,cg ,mass ,localInertiaTensor ,cost...
,reliability ,availability ,torque ,lwh);

}
10 }

Listing A.14: Satellite Class
package satkan.persistant;

import satkan .*;
import java.util.ArrayList;

5
public class Satellite implements Momentable {
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public Satellite (){}

10 public Satellite(String Id, ArrayList <Momentable > list , ...
ArrayList <ComponentLocation > location) {
this.Id = Id;
this.list = list;
this.location = location;
this.mass = this.get_mass ();

15 this.cost = this.get_cost ();
this.reliability = this.get_reliability ();

}
public String Id;
public ArrayList <Momentable > list;

20 public ArrayList <ComponentLocation > location;
public double cost;
public double mass;
public double reliability;

25 public ArrayList get_component_list () {
return list;

}

public double [] get_cg () {
30 throw new UnsupportedOperationException("Not supported yet...

.");
}

public double get_reliability () {
reliability = 0.0;

35 for (int lis = 0; lis < list.size(); lis ++) {
Component comp = (Component) list.get(lis);
reliability = reliability + comp.getReliabiltiy ();

}
return reliability / list.size();

40 }

public double get_mass () {
mass = 0;
for (int lis = 0; lis < list.size(); lis ++) {

45 Component comp = (Component) list.get(lis);
mass = mass + comp.getMass ();

}
return mass;

}
50

public double get_cost () {
cost = 0;
for (int lis = 0; lis < list.size(); lis ++) {

Component comp = (Component) list.get(lis);
55 cost = cost + comp.getCost ();

}
return cost;
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}

60 public double [] get_localInertiaTensor () {
throw new UnsupportedOperationException("Not supported yet...

.");
}

public String get_id () {
65 return this.Id;

}

public ArrayList <Momentable > get_satellite_components () {
return this.list;

70 }

public ArrayList <double[]> get_satellite_rotation_local () {
ArrayList <double[]> rotation_local = new ArrayList <double...

[]>();
for (int i = 0; i < this.location.size(); i++) {

75 rotation_local.add(this.location.get(i)....
getLocalRotation ());

}
return rotation_local;

}

80 public ArrayList <double[]> get_satellite_rotation_global () {
ArrayList <double[]> rotation_global = new ArrayList <double...

[]>();
for (int i = 0; i < this.location.size(); i++) {

rotation_global.add(this.location.get(i)....
getGlobalRotation ());

}
85 return rotation_global;

}

public ArrayList <double[]> get_satellite_translation () {
ArrayList <double[]> translation = new ArrayList <double...

[]>();
90 for (int i = 0; i < this.location.size(); i++) {

translation.add(this.location.get(i).getTranslation ())...
;

}
return translation;

}
95 }

Listing A.15: Plate Class
package satkan.persistant;

import javax.vecmath.AxisAngle4f;
import satkan .*;

5 public class Plate extends Structure {
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public Plate (){};
public Plate(String Id ,String [] region ,String connectionType ,

double [] xyz ,double density ,
double cost ,double reliability ,int availability ,double [] lwh...

){
10 super(Id ,region ,connectionType ,xyz ,0,null ,cost ,reliability , ...

availability ,lwh);
this.height = lwh [2];
this.width = lwh [1];
this.thickness = lwh [0];
this.density = density ;

15 this.volume = height * width * thickness ;
double mass1 = density * this.volume;

double [] localInertiaTensor = new double [3] ;
localInertiaTensor [0] = 1.0/12.0 * mass1 *height * height ;
localInertiaTensor [1] = 1.0/12.0 * mass1 * width *width ;

20 localInertiaTensor [2] = 1.0/12.0 * mass1 * ( height * height...
+ width * width);

super.set_localInertiaTensor(localInertiaTensor);
super.set_mass(mass1);

}
private double height;

25 private double width;
private double thickness;
private double density;
private double volume ;

30 public double get_height ()
{
return height ;
}

public double get_width ()
35 {

return width ;
}

public double get_thickness ()
{

40 return thickness ;
}

public double get_density ()
{
return density ;

45 }
public double get_volume ()

{
return volume ;
}

50 public void set_volume(double volume)
{
this.volume = volume;
}

}
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Listing A.16: Create Object Combination List Method
/** * Creates combinations of component ids using given ...

parameters and returns them in ArrayList <Object[]>
* @param components Ids of the same type of components in ...

Arrays
* @param numberofUsage Number of components in a single ...

combination to be created
4 * @param repetitionOnly true : creates list of combinations ...

using only ’like’ component Id
* false: creates list of combinations ...

using depends on the "repetition" parameter
* @param repetition true: creates list of combinations using...

the same component Ids and other component Ids as well. ...
Works only when "repetitiononly" is "false"

* false: creates list of combinations ...
using only different components Ids. Works only when "...
repetitiononly" is "false"

*
9 * @return contains Arrays of component combinations

* @exception no exception
*/

public static ArrayList <Object[]> createObjectCombinationList(...
Object [] components , int numberofUsage , boolean same , ...
boolean different) throws CombinatoricException {
ArrayList <Object[]> combinedList = new ArrayList <Object...

[]>();
14 // Only one type of component combination will be added

if (same) {
for (int componentsIndex = 0; componentsIndex < ...

components.length; componentsIndex ++) {
Object [] combo = new Object[numberofUsage ];
for (int comboIndex = 0; comboIndex < ...

numberofUsage; comboIndex ++) {
19 combo[comboIndex] = components[componentsIndex...

];
}
combinedList.add(combo);

}
} else {

24 Combinations c = new Combinations(components , ...
numberofUsage);

while (c.hasMoreElements ()) {
Object [] combo = (Object []) c.nextElement ();
combinedList.add(combo);

}
29 } //add same type of component combination

if (different && (numberofUsage > 1) && (!same)) {
for (int componentsIndex = 0; componentsIndex < ...

components.length; componentsIndex ++) {
Object [] combo = new Object[numberofUsage ];
for (int comboIndex = 0; comboIndex < ...

numberofUsage; comboIndex ++) {
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34 combo[comboIndex] = components[componentsIndex...
];

}
combinedList.add(combo);

}

39 } else if (combinedList.get(0).length == 0) {
}
return combinedList;

}

Listing A.17: Create Combined Object Combination List Method
/** * Creates a new combined ArrayList <Object[]> from ...

different ArrayList <Objects[]>
*

3 * @param list ArrayList contains ArrayList <Objects[]> which ...
contains combinations of component Ids.

* @return ArrayList <Objects[]>
* @exception no exception
*/

public static ArrayList <Object[]> ...
createCombinedObjectCombinationList(ArrayList <ArrayList <...
Object[]>> list) {

8
ArrayList <Object[]> combinedList = new ArrayList <Object...

[]>();
ArrayList <Object[]> tempCombinedList = new ArrayList <...

Object []>();
ArrayList <Object[]> ArrayListTemp = new ArrayList <Object...

[]>();
for (int i = 0; i < list.size(); i++) {

13 ArrayListTemp = list.get(i);
if (combinedList.isEmpty ()) {

combinedList = ArrayListTemp;
} else {

int t = 0;
18 int t2 = 0;

for (int tempIndex = 0; tempIndex < ArrayListTemp....
size(); tempIndex ++) {
Object [] ArrayListTempRow = ArrayListTemp.get(...

tempIndex);
t2++;
for (int combinedIndex = 0; combinedIndex < ...

combinedList.size(); combinedIndex ++) {
23

Object [] combinedRow = combinedList.get(...
combinedIndex);

t++;
Object [] newCombinedRow = new Object[...

combinedRow.length + ArrayListTempRow....
length ];
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28 for (int j = 0; j < combinedRow.length; j...
++) {
newCombinedRow[j] = combinedRow[j];

}

for (int tempRowIndex = 0; tempRowIndex < ...
ArrayListTempRow.length; tempRowIndex...
++) {

33 newCombinedRow[combinedRow.length + ...
tempRowIndex] = ArrayListTempRow[...
tempRowIndex ];

}

tempCombinedList.add(newCombinedRow);
}

38 }
combinedList.clear();
combinedList.addAll(tempCombinedList);
tempCombinedList.clear();

}
43 }

System.out.println(combinedList.size());
tempCombinedList = null;
ArrayListTemp = null;
list = null;

48 return combinedList;
}

Listing A.18: Remove Under Constraint C3s Method
1 public static void removeUnderConstraintC3s(ArrayList <Object[]> ...

C3L , double c_mass , double c_cost) throws ...
ClassNotFoundException {

DataBase db = new DataBase ();
for (int C3LRowIndex = 0; C3LRowIndex < C3L.size(); ...

C3LRowIndex ++) {
Object [] C3LRow = C3L.get(C3LRowIndex);
// create mass variable

6 double mass = 0;
double cost = 0;
for (int i = 0; i < C3LRow.length; i++) {

String Id = (String) C3LRow[i];
Component comp = (Component) db....

get_component_object("Component", Id);
11 mass = mass + comp.getMass ();

cost = cost + comp.getCost ();
}
if (mass > c_mass) {

C3L.remove(C3LRowIndex);
16 C3LRowIndex --;

} else if (cost > c_cost) {
C3L.remove(C3LRowIndex);
C3LRowIndex --;
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}
21 }

}

Listing A.19: Remove Invalid C3s Method
public static void removeInvalidC3s(ArrayList <Object[]> C3L) ...

throws ClassNotFoundException {
DataBase db = new DataBase ();

3 ArrayList <String[]> typeCount = new ArrayList <String []>();
typeCount = db.get_ConnectionTypes ();
for (int C3LRowIndex = 0; C3LRowIndex < C3L.size(); ...

C3LRowIndex ++) {
Object [] C3LRow = C3L.get(C3LRowIndex);
String [] conTypes = new String[C3LRow.length ];

8 //get all connection types corresponding the components...
Ids

for (int i = 0; i < C3LRow.length; i++) {

String Id = (String) C3LRow[i];
Component comp = (Component) db....

get_component_object("Component", Id);
13 conTypes[i] = comp.getConnectionType ();

}
String [] typeCountSat;
typeCountSat = Assemble.countSameObj(conTypes);
for (int i = 0; i < typeCountSat.length; i++) {

18 boolean hasType = false;
for (String [] temp : typeCount) {

if (temp [0]. equals(typeCountSat[i])) {
hasType = true;
if (Double.parseDouble(temp [1]) < Double....

parseDouble(typeCountSat[i + 1])) {
23 C3L.remove(C3LRowIndex);

C3LRowIndex --;
}

}
}

28 if (! hasType) {
C3L.remove(C3LRowIndex);
C3LRowIndex --;

} else {
}

33 i++;
}

}
}

Listing A.20: Create Combined Object Combination Location List Method
public static ArrayList <ArrayList <Object[]>> ...

createCombinedObjectCombinationLocationListList(ArrayList <...
Object[]> C3L) throws ClassNotFoundException , ...
CombinatoricException {
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//open the database
DataBase db = new DataBase ();

4 // define the list to be returned
ArrayList <ArrayList <Object[]>> locationList = new ...

ArrayList <ArrayList <Object []>>();
//use every row in the C3L (has only components)
for (int listRow = 0; listRow < C3L.size(); listRow ++) {

// define an arraylist
9 ArrayList <ArrayList <Object[]>> RowLocations = new ...

ArrayList <ArrayList <Object []>>(); //
//get the components into Array
Object [] C3LRow = C3L.get(listRow);
// find the repetition of each component to create ...

combination
String [] ComponentCount;

14 ComponentCount = Assemble.countSameObj(C3LRow);
// remove repeated Components
ArrayList <Object > temparray = new ArrayList <Object >();
Set s = new HashSet ();
for (int i = 0; i < C3LRow.length; i++) {

19 if (s.add(C3LRow[i])) {
temparray.add(C3LRow[i]);

}
}
C3LRow = temparray.toArray ();

24 // for every component in the combinedRow cast Id ...
object to String so that it can be used to reach ...
the db

for (int row = 0; row < C3LRow.length; row++) {
String Id = (String) C3LRow[row];
Component comp = (Component) db....

get_component_object("Component", Id); //get ...
real object from db

String conType = comp.getConnectionType ();
29 String [] region = comp.getRegion ();

ArrayList <Object[]> componentLocations = new ...
ArrayList <Object []>(); // all locations for one...
component (region + connectionType)

// there may be more than one region the component ...
may be used

for (int reg = 0; reg < region.length; reg++) {
//get location Ids of which region and ...

connection type match
34 String [] str = db.get_Id("ComponentLocation", ...

"region", region[reg], "connectionType", ...
conType);

for (int strCount = 0; strCount < str.length; ...
strCount ++) {
Object [] tempObj = new Object [1];
if (!str[strCount ]. isEmpty ()) {

tempObj [0] = str[strCount ];
39 componentLocations.add(tempObj);
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}
}

}

44 if (!( componentLocations.get (0).length < 1)) {
Object [] CLArray = new Object[...

componentLocations.size()];
for (int row2 = 0; row2 < componentLocations....

size(); row2 ++) {
// In array List its in Object [] mode , one...

level upper needed
CLArray[row2] = componentLocations.get(...

row2)[0];
49 }

String temp = ComponentCount[row * 2 + 1];
int numberofusage = Integer.parseInt(temp);
componentLocations = Assemble....

createObjectCombinationList(CLArray , ...
numberofusage , false , false);

RowLocations.add(componentLocations);
54 } else {

// dont need to check the other components ...
since it is not a valid C3

break;
}

}
59

ArrayList <Object[]> rowLocationList = new ArrayList <...
Object []>();

if (C3LRow.length == RowLocations.size()) {
rowLocationList = Assemble....

createCombinedObjectCombinationList(...
RowLocations);

// Eliminate Location Rows with repeated locations
64 for (int k = 0; k < rowLocationList.size(); k++) {

Object [] temprow = rowLocationList.get(k);
String [] tempnum = Assemble.countSameObj(...

temprow);
for (int temp = 0; temp < tempnum.length; temp...

++) {
temp ++;

69 if (!( tempnum[temp]. equals("1"))) {
rowLocationList.remove(k);
k--;
break;

}
74 }

}

locationList.add(rowLocationList);
} else {

79 C3L.remove(listRow);
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listRow --;
}

}
return locationList;

84 }
}

Listing A.21: Construct Viewer Class
package satkan;

import math .*;
import com.sun.j3d.loaders.Scene;

5 import com.sun.j3d.loaders.objectfile.ObjectFile;
import javax.swing.JFrame;
import java.awt .*;
import javax.swing .*;
import javax.media.j3d.Canvas3D;

10 import com.sun.j3d.utils.universe.SimpleUniverse;
import javax.media.j3d.BranchGroup;
import com.sun.j3d.utils.geometry.Box;
import javax.vecmath .*;
import javax.media.j3d.DirectionalLight;

15 import javax.media.j3d.BoundingSphere;
import javax.media.j3d.Appearance;
import javax.media.j3d.Material;
import javax.media.j3d.TransformGroup;
import com.sun.j3d.utils.behaviors.mouse .*;

20 import com.sun.j3d.utils.geometry.Cone;
import com.sun.j3d.utils.geometry.Cylinder;
import com.sun.j3d.utils.geometry.Sphere;
import com.sun.j3d.utils.universe.ViewingPlatform;
import javax.media.j3d.ColoringAttributes;

25 import javax.media.j3d.Font3D;
import javax.media.j3d.FontExtrusion;
import javax.media.j3d.Shape3D;
import javax.media.j3d.Text3D;
import javax.media.j3d.Transform3D;

30
public class ConstructViewer extends JFrame {

/**
* The SimpleUniverse object
*/

35 protected SimpleUniverse simpleU;

/**
* The root BranchGroup Object.
*/

40 protected BranchGroup rootBranchGroup;

/**
* Constructor that consturcts the window with the given name.
*
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45 * @param name
* The name of the window , in String format
*/

public ConstructViewer(String name) {
// The next line will construct the window and name it

50 // with the given name
super(name);

// Perform the initial setup , just once
initial_setup ();

55 }

/**
* Perform the essential setups for the Java3D
*/

60 protected void initial_setup () {

getContentPane ().setLayout(new BorderLayout ());
GraphicsConfiguration config = SimpleUniverse

.getPreferredConfiguration ();
65

Canvas3D canvas3D = new Canvas3D(config);

getContentPane ().add("Center", canvas3D);
70 simpleU = new SimpleUniverse(canvas3D);

simpleU.getViewingPlatform ().setNominalViewingTransform ();
rootBranchGroup = new BranchGroup ();

}
public void addDirectionalLight(Point3d boundingPoint , double ...

boundingRadius ,Vector3f direction , Color3f color) {
75 // Creates a bounding sphere for the lights

BoundingSphere bounds = new BoundingSphere(boundingPoint ,...
boundingRadius);

// Then create a directional light with the given
DirectionalLight lightD = new DirectionalLight(color , ...

direction);
lightD.setInfluencingBounds(bounds);

80 // Then add it to the root BranchGroup
rootBranchGroup.addChild(lightD);

}
public void addPart(String name , String colorStr , Color3f spec ,

Vector3f transVector , Matrix3d Rotation){
85 TransformGroup tg = new TransformGroup ();

Appearance app = new Appearance ();
Material mat = new Material ();
mat.setSpecularColor(spec);
mat.setShininess (5.0f);

90 app.setMaterial(mat);

ObjectFile file = new ObjectFile ();
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Scene scene = null;
95 try {

scene = file.load(ClassLoader.getSystemResource(name+"....
obj"));

} catch (Exception e) {
}

100
Transform3D translate = new Transform3D ();

translate.set(transVector);

105
Transform3D rotate = new Transform3D ();
rotate.set(Rotation);
TransformGroup plateTGR = new TransformGroup(rotate);
System.out.println(rotate.getScale ());

110 plateTGR.addChild(scene.getSceneGroup ());
TransformGroup plateTGT = new TransformGroup(translate);
tg.addChild(plateTGT);

plateTGT.addChild(plateTGR);
115

// Then add it to the rootBranchGroup
rootBranchGroup.addChild(tg);

tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
120 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

MouseRotate myMouseRotate = new MouseRotate ();
myMouseRotate.setTransformGroup(tg);
myMouseRotate.setSchedulingBounds(new BoundingSphere ());

125 rootBranchGroup.addChild(myMouseRotate);

MouseTranslate myMouseTranslate = new MouseTranslate ();
myMouseTranslate.setTransformGroup(tg);
myMouseTranslate.setSchedulingBounds(new BoundingSphere ());

130 rootBranchGroup.addChild(myMouseTranslate);

MouseZoom myMouseZoom = new MouseZoom ();
myMouseZoom.setTransformGroup(tg);
myMouseZoom.setSchedulingBounds(new BoundingSphere ());

135 rootBranchGroup.addChild(myMouseZoom);
}

public void addSphere(float x, Color3f diffuse , Color3f spec ,
Vector3f transVector , AxisAngle4f axisRotation){

140 TransformGroup tg = new TransformGroup ();
// First setup an appearance for the obj
Appearance app = new Appearance ();
Material mat = new Material ();
mat.setDiffuseColor(diffuse);
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145 mat.setSpecularColor(spec);
mat.setShininess (5.0f);
app.setMaterial(mat);
Sphere obj = new Sphere(x);
obj.setAppearance(app);

150
Transform3D translate = new Transform3D ();
translate.set(transVector);
TransformGroup plateTGT = new TransformGroup(translate);
tg.addChild(plateTGT);

155
Transform3D rotate = new Transform3D ();

Matrix3d matrix = new Matrix3d ();
matrix.set(axisRotation);

160 rotate.set(matrix);
TransformGroup plateTGR = new TransformGroup(rotate);

plateTGR.addChild(obj);
plateTGT.addChild(plateTGR);

165
// Then add it to the rootBranchGroup
rootBranchGroup.addChild(tg);

tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
170 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

MouseRotate myMouseRotate = new MouseRotate ();
myMouseRotate.setTransformGroup(tg);
myMouseRotate.setSchedulingBounds(new BoundingSphere ());

175 rootBranchGroup.addChild(myMouseRotate);

MouseTranslate myMouseTranslate = new MouseTranslate ();
myMouseTranslate.setTransformGroup(tg);
myMouseTranslate.setSchedulingBounds(new BoundingSphere ());

180 rootBranchGroup.addChild(myMouseTranslate);

MouseZoom myMouseZoom = new MouseZoom ();
myMouseZoom.setTransformGroup(tg);
myMouseZoom.setSchedulingBounds(new BoundingSphere ());

185 rootBranchGroup.addChild(myMouseZoom);
}
public void addCylinder(float x, float y, Color3f diffuse , ...

Color3f spec ,
Vector3f transVector , AxisAngle4f axisRotation){

TransformGroup tg = new TransformGroup ();
190

// First setup an appearance for the obj
Appearance app = new Appearance ();
Material mat = new Material ();
mat.setDiffuseColor(diffuse);

195 mat.setSpecularColor(spec);
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mat.setShininess (5.0f);
app.setMaterial(mat);
Cylinder obj = new Cylinder(x, y);
obj.setAppearance(app);

200

Transform3D translate = new Transform3D ();
205 translate.set(transVector);

TransformGroup plateTGT = new TransformGroup(translate);
tg.addChild(plateTGT);

Transform3D rotate = new Transform3D ();
210

Matrix3d matrix = new Matrix3d ();
matrix.set(axisRotation);
rotate.set(matrix);
TransformGroup plateTGR = new TransformGroup(rotate);

215
plateTGR.addChild(obj);
plateTGT.addChild(plateTGR);

// Then add it to the rootBranchGroup
220 rootBranchGroup.addChild(tg);

tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

225 MouseRotate myMouseRotate = new MouseRotate ();
myMouseRotate.setTransformGroup(tg);
myMouseRotate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseRotate);

230 MouseTranslate myMouseTranslate = new MouseTranslate ();
myMouseTranslate.setTransformGroup(tg);
myMouseTranslate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseTranslate);

235 MouseZoom myMouseZoom = new MouseZoom ();
myMouseZoom.setTransformGroup(tg);
myMouseZoom.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseZoom);
}

240 public void addCone(float x, float y, Color3f diffuse , Color3f ...
spec ,

Vector3f transVector , AxisAngle4f axisRotation){
TransformGroup tg = new TransformGroup ();

// First setup an appearance for the obj
245 Appearance app = new Appearance ();

Material mat = new Material ();
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mat.setDiffuseColor(diffuse);
mat.setSpecularColor(spec);
mat.setShininess (5.0f);

250 app.setMaterial(mat);
Cone obj = new Cone(x, y);
obj.setAppearance(app);

Transform3D translate = new Transform3D ();
255 translate.set(transVector);

TransformGroup plateTGT = new TransformGroup(translate);
tg.addChild(plateTGT);

Transform3D rotate = new Transform3D ();
260

Matrix3d matrix = new Matrix3d ();
matrix.set(axisRotation);
rotate.set(matrix);
TransformGroup plateTGR = new TransformGroup(rotate);

265
plateTGR.addChild(obj);
plateTGT.addChild(plateTGR);

// Then add it to the rootBranchGroup
270 rootBranchGroup.addChild(tg);

tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

275 MouseRotate myMouseRotate = new MouseRotate ();
myMouseRotate.setTransformGroup(tg);
myMouseRotate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseRotate);

280 MouseTranslate myMouseTranslate = new MouseTranslate ();
myMouseTranslate.setTransformGroup(tg);
myMouseTranslate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseTranslate);

285 MouseZoom myMouseZoom = new MouseZoom ();
myMouseZoom.setTransformGroup(tg);
myMouseZoom.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseZoom);

290 }
public void addBox(float x, float y, float z, Color3f diffuse , ...

Color3f spec ,
Vector3f transVector , AxisAngle4f axisRotation) {

TransformGroup tg = new TransformGroup ();

295 // First setup an appearance for the obj
Appearance app = new Appearance ();
Material mat = new Material ();
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mat.setDiffuseColor(diffuse);
mat.setSpecularColor(spec);

300 mat.setShininess (5.0f);
app.setMaterial(mat);
Box obj = new Box(x, y, z, app);

Transform3D translate = new Transform3D ();
305 translate.set(transVector);

TransformGroup plateTGT = new TransformGroup(translate);
tg.addChild(plateTGT);

Transform3D rotate = new Transform3D ();
310

Matrix3d matrix = new Matrix3d ();
matrix.set(axisRotation);
rotate.set(matrix);
TransformGroup plateTGR = new TransformGroup(rotate);

315
plateTGR.addChild(obj);
plateTGT.addChild(plateTGR);

// Then add it to the rootBranchGroup
320 rootBranchGroup.addChild(tg);

tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

325 MouseRotate myMouseRotate = new MouseRotate ();
myMouseRotate.setTransformGroup(tg);
myMouseRotate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseRotate);

330 MouseTranslate myMouseTranslate = new MouseTranslate ();
myMouseTranslate.setTransformGroup(tg);
myMouseTranslate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseTranslate);

335 MouseZoom myMouseZoom = new MouseZoom ();
myMouseZoom.setTransformGroup(tg);
myMouseZoom.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseZoom);

}
340 public void addArrow( Color3f diffuse , Color3f spec ,

Vector3f transVector , AxisAngle4f axisRotation) {
TransformGroup tg = new TransformGroup ();

Axis obj = new Axis();
345

Transform3D translate = new Transform3D ();
translate.set(transVector);
TransformGroup plateTGT = new TransformGroup(translate);
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350 tg.addChild(plateTGT);

Transform3D rotate = new Transform3D ();

Matrix3d matrix = new Matrix3d ();
355 matrix.set(axisRotation);

rotate.set(matrix);
TransformGroup plateTGR = new TransformGroup(rotate);

plateTGR.addChild(obj);
360 plateTGT.addChild(plateTGR);

// Then add it to the rootBranchGroup
rootBranchGroup.addChild(tg);

365 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

MouseRotate myMouseRotate = new MouseRotate ();
myMouseRotate.setTransformGroup(tg);

370 myMouseRotate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseRotate);

MouseTranslate myMouseTranslate = new MouseTranslate ();
myMouseTranslate.setTransformGroup(tg);

375 myMouseTranslate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseTranslate);

MouseZoom myMouseZoom = new MouseZoom ();
myMouseZoom.setTransformGroup(tg);

380 myMouseZoom.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseZoom);

}

public void add3dFont(String text , Color3f color ,
385 Vector3f transVector , AxisAngle4f axisRotation) {

TransformGroup tg = new TransformGroup ();
Appearance textAppear = new Appearance ();

ColoringAttributes textColor = new ColoringAttributes ();
textColor.setColor(color);

390 textAppear.setColoringAttributes(textColor);
textAppear.setMaterial(new Material ());
Font3D font3D = new Font3D(new Font("Helvetica", Font.PLAIN , ...

1),
new FontExtrusion ());
Text3D textGeom = new Text3D(font3D , text);

395 textGeom.setAlignment(Text3D.ALIGN_CENTER);
Shape3D textShape = new Shape3D ();
textShape.setGeometry(textGeom);
textShape.setAppearance(textAppear);

400
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Transform3D translate = new Transform3D ();
translate.set(transVector);
translate.setScale (0.02);
TransformGroup plateTGT = new TransformGroup(translate);

405 tg.addChild(plateTGT);

Transform3D rotate = new Transform3D ();

Matrix3d matrix = new Matrix3d ();
410 matrix.set(axisRotation);

rotate.set(matrix);
TransformGroup plateTGR = new TransformGroup(rotate);

plateTGR.addChild(textShape);
415 plateTGT.addChild(plateTGR);

// Then add it to the rootBranchGroup
rootBranchGroup.addChild(tg);

420 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

MouseRotate myMouseRotate = new MouseRotate ();
myMouseRotate.setTransformGroup(tg);

425 myMouseRotate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseRotate);

MouseTranslate myMouseTranslate = new MouseTranslate ();
myMouseTranslate.setTransformGroup(tg);

430 myMouseTranslate.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseTranslate);

MouseZoom myMouseZoom = new MouseZoom ();
myMouseZoom.setTransformGroup(tg);

435 myMouseZoom.setSchedulingBounds(new BoundingSphere ());
rootBranchGroup.addChild(myMouseZoom);

}

public static double [] get_translation(int listIndex){
440

double [] arrayTr = SatView.listTr.get(listIndex);
return arrayTr;

}
445 public static double [] get_rotation_local(int listIndex){

double [] arrayRt = SatView.listRtl.get(listIndex);
return arrayRt;

}
450

/**
* Finalise everything to get ready
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*/
public void finalise () {

455 // add the branch group into the Universe
simpleU.addBranchGraph(rootBranchGroup);

// And set up the camera position
// First get the ViewPlatform:

460 ViewingPlatform vp = simpleU.getViewingPlatform ();

//Next get the TransformGroup attached to that ViewPlatform:
TransformGroup View_TransformGroup = vp.getMultiTransformGroup...

().getTransformGroup (0);

465 // manipulate the ViewPlatform create a Transform3D so that ...
we can move the TransformGroup.

Transform3D View_Transform3D = new Transform3D ();
View_TransformGroup.getTransform(View_Transform3D);
// set the translation and assign it to its TransformGroup
View_Transform3D.setTranslation(new Vector3f (0.0f,0.0f,3.0f));

470 View_TransformGroup.setTransform(View_Transform3D);
}

@SuppressWarnings("deprecation")
public static void main(String [] args) {

475 ConstructViewer bc = new ConstructViewer("SATELLITE BUILDER ...
1.0.0");

bc.setSize (1200 , 1200);
bc.setTitle("Satellite Viewer");
bc.setResizable(true);

480 for (int i = 0 ;i < SatView.listObj.size();i++){
String name = SatView.listObj.get(i).get_id ();
String colorStr = "yellow";
Color3f spec =new Color3f(1, 0, 0);

485 Vector3f transVector = new Vector3f () ;
double [] vec ;
vec = ConstructViewer.get_translation(i);
transVector.setX((float)vec [0]) ;
transVector.setY((float)vec [1]) ;

490 transVector.setZ((float)vec [2]) ;

Matrix3d rotation = new Matrix3d ();
double [] rot ;
rot = ConstructViewer.get_rotation_local(i);

495 rotation.set(rot);

bc.addPart(name , colorStr , spec , transVector , rotation);
}

500 bc.addCylinder (0.003f, 1.6f, new Color3f(0, 0, 1), new Color3f...
(0, 0, 1),
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new Vector3f (0.0f, 0.0f,0.0f),new AxisAngle4f( 1.0f,0.0...
f,0.0f,( float)(90.0/180.0 *Math.PI)));

bc.addCone (0.006f, 0.017f, new Color3f (1,1,1), new Color3f(1, ...
1, 1),

new Vector3f (0f, 0f,0.8f),new AxisAngle4f( 1.0f,0.0f...
,0.0f,( float)(90.0/180.0 *Math.PI)));

bc.add3dFont("+z", new Color3f (1,1,0), new Vector3f (0f, 0f...
,0.81f), new AxisAngle4f( 1.0f,0.0f,0.0f,(float)(0.0/180.0 ...
*Math.PI)));

505 bc.addCylinder (0.003f, 1.2f, new Color3f (0,1, 0), new Color3f...
(0, 1, 0),

new Vector3f (0.0f, 0.0f,0.0f),new AxisAngle4f( 1.0f,0.0...
f,0.0f,( float)(0.0/180.0 *Math.PI)));

bc.addCone (0.006f, 0.017f, new Color3f (1,1, 1), new Color3f(1,...
1, 1),

new Vector3f (0f, 0.6f,0f),new AxisAngle4f( 1.0f,0.0f...
,0.0f,( float)(0/180.0 *Math.PI)));

bc.add3dFont("+y", new Color3f (1,1,0), new Vector3f (0f, 0.61f...
,0f), new AxisAngle4f( 1.0f,0.0f,0.0f,( float)( -90.0/180.0 *...
Math.PI)));

510 bc.addCylinder (0.003f, 1.6f, new Color3f (1,0, 0), new Color3f...
(1, 0, 0),

new Vector3f (0.0f, 0.0f,0.0f),new AxisAngle4f( 0.0f,0.0...
f,1.0f,( float)(90/180.0 *Math.PI)));

bc.addCone (0.006f, 0.017f, new Color3f (1,1, 1), new Color3f(1,...
1, 1),

new Vector3f (0.8f, 0f,0f),new AxisAngle4f( 0.0f,0.0f...
,1.0f,( float)( -90.0/180.0 *Math.PI)));

bc.add3dFont("+x", new Color3f (1,1,0), new Vector3f (0.81f, 0.0...
f,0f), new AxisAngle4f( 0.0f,1f,0.0f,(float)(90.0/180.0 *...
Math.PI)));

515 bc.addDirectionalLight(new Point3d (0.0, 0.0, -1.0) ,300,new ...
Vector3f (0.0f, 0.0f,-1.0f), new Color3f (1f, 1f, 1f));

bc.addDirectionalLight(new Point3d (-40, 60,60) ,150,new ...
Vector3f (1f, 0f,1f), new Color3f (1f, 1f, 1f));

bc.finalise ();
bc.setVisible(true);
return;

520 }
}

Listing A.22: Database Class
package satkan;

import satkan.persistant.Satellite;
4 import java.util.ArrayList;

import java.util.Collection;
import java.util.Iterator;
import javax.jdo.PersistenceManager;
import javax.jdo.Query;

9 import satkan.persistant .*;
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public class DataBase {

public DataBase () {
14 PersistenceManager temppm = Utilities....

getPersistenceManager(false);
DataBase.pm = temppm;

}

public DataBase(Boolean clean) {
19 PersistenceManager temppm = Utilities....

getPersistenceManager(clean);
DataBase.pm = temppm;

}

public void save_satellite(String satelliteId , ArrayList <...
Momentable > componentList , ArrayList <double[]> ...
rotationLocal , ArrayList <double[]> rotationGlobal , ...
ArrayList <double[]> translation) {

24
ArrayList <ComponentLocation > locationList = new ArrayList <...

ComponentLocation >();
for (int i = 0; i < componentList.size(); i++) {

ComponentLocation location = new ComponentLocation("X"...
, "CT@", translation.get(i), rotationGlobal.get(i),...
rotationLocal.get(i));

locationList.add(location);
29 }

Satellite sat = new Satellite(satelliteId , componentList , ...
locationList);

try {
34 pm.currentTransaction ().begin ();

pm.makePersistent(sat);
pm.currentTransaction ().commit ();

System.out.println("Satellite Saved ...");
39 } catch (RuntimeException x) {

System.out.println("Error: " + x.getMessage ());
}

}

44 public void save_satellite(String satelliteId , ArrayList <...
Momentable > componentList , ArrayList <ComponentLocation > ...
locationList) {

Satellite sat = new Satellite(satelliteId , componentList , ...
locationList);

try {
49 pm.currentTransaction ().begin ();

pm.makePersistent(sat);
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pm.currentTransaction ().commit ();

System.out.println("Satellite Saved ...");
54 } catch (RuntimeException x) {

System.out.println("Error: " + x.getMessage ());
}

}

59 public void delete_Data(String classname , String componentId) ...
throws ClassNotFoundException {

Class cls = Class.forName("satkan.persistant." + classname...
);

Query query = pm.newQuery(cls , "this.Id == componentId");
query.declareParameters("String componentId");

64 Collection result = (Collection) query.execute(componentId...
);

Iterator itr = result.iterator ();
Object obj = itr.next();
// System.out.println(obj.get_id ());
query.closeAll ();

69 pm.currentTransaction ().begin ();
// sobj.set_Id(obj.get_id ());
pm.deletePersistent(obj);
pm.currentTransaction ().commit ();

}
74

public boolean has_Id(String classType , String componentId) ...
throws ClassNotFoundException {

Class cls = Class.forName("satkan.persistant." + classType...
);

Query query = pm.newQuery(cls , "this.Id == componentId");
79 query.declareParameters("String componentId");

Collection result = (Collection) query.execute(componentId...
);

Iterator itr = result.iterator ();
// Object obj = itr.next();
if (itr.hasNext ()) {

84 query.closeAll ();
return true;

} else {
query.closeAll ();

}
89 return false;

}

public void ChangeOrientation(String classname , String ...
componentId , String [] newType) throws ...
ClassNotFoundException {
// this.pm = Utilities.getPersistenceManager(false);
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94 Class cls = Class.forName("satkan.persistant." + classname...
);

Query query = pm.newQuery(cls , "this.Id == componentId");
query.declareParameters("String componentId");
Collection result = (Collection) query.execute(componentId...

);
Iterator itr = result.iterator ();

99
Object obj = itr.next();

if (obj.getClass ().isInstance(new ComponentLocation ())) {
ComponentLocation objl = (ComponentLocation) obj;

104 if (!objl.getConnectionType ().equalsIgnoreCase("CT0"))...
{
System.out.println(objl.getId() + "Nothing changed...

");
query.closeAll ();

}
} else {

109 if (!obj.getClass ().isInstance(new Plate ())) {
Component objc = (Component) obj;
System.out.println(objc.getId());
query.closeAll ();
pm.currentTransaction ().begin();

114 objc.set_orientation(newType);
// pm.deletePersistent(obj);
pm.makePersistent(objc);
pm.currentTransaction ().commit ();

}
119 }

}

public void ChangeConnectionType(String classname , String ...
componentId , String newType) throws ClassNotFoundException ...
{
// this.pm = Utilities.getPersistenceManager(false);

124 Class cls = Class.forName("satkan.persistant." + classname...
);

Query query = pm.newQuery(cls , "this.Id == componentId");
query.declareParameters("String componentId");
Collection result = (Collection) query.execute(componentId...

);
Iterator itr = result.iterator ();

129
Object obj = itr.next();

if (obj.getClass ().isInstance(new ComponentLocation ())) {
ComponentLocation objl = (ComponentLocation) obj;

134 if (!objl.getConnectionType ().equalsIgnoreCase("CT0"))...
{
System.out.println(objl.getId());
query.closeAll ();
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pm.currentTransaction ().begin();
objl.set_connectionType(newType);

139 // pm.deletePersistent(obj);
pm.makePersistent(objl);
pm.currentTransaction ().commit ();

}
} else {

144 if (!obj.getClass ().isInstance(new Plate ())) {
Component objc = (Component) obj;
System.out.println(objc.getId());
query.closeAll ();
pm.currentTransaction ().begin();

149 objc.set_connectionType(newType);
// pm.deletePersistent(obj);
pm.makePersistent(objc);
pm.currentTransaction ().commit ();

}
154 }

}

public Object get_component_object(String classType , String ...
componentId) throws ClassNotFoundException {

159 Class cls = Class.forName("satkan.persistant." + classType...
);

Query query = pm.newQuery(cls , "this.Id == componentId");
query.declareParameters("String componentId");
Collection result = (Collection) query.execute(componentId...

);
Iterator itr = result.iterator ();

164 Object obj = itr.next();
query.closeAll ();
return obj;

}

169 public Object get_component_object(String classType) throws ...
ClassNotFoundException {

Class cls = Class.forName("satkan.persistant." + classType...
);

Query query = pm.newQuery(cls);

174 Collection result = (Collection) query.execute ();
Iterator itr = result.iterator ();
Object obj = itr.next();
query.closeAll ();
return obj;

179 }

public String [] get_Id(String classType) throws ...
ClassNotFoundException {
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Class cls = Class.forName("satkan.persistant." + classType...
);

184 Query query = pm.newQuery(cls);
query.setOrdering("Id ascending");
Collection results = (Collection) query.execute ();
Iterator itr = results.iterator ();
String [] strings = new String[results.size()];

189 int i = 0;
while (itr.hasNext ()) {

if (classType.equalsIgnoreCase("Satellite")) {
Momentable obj = (Momentable) itr.next();
strings[i] = obj.get_id ();

194 i++;
} else {

Component obj = (Component) itr.next();
strings[i] = obj.getId();
i++;

199 }
}
query.closeAll ();
return strings;

}
204

public String [] get_Id(String classType , int availability) ...
throws ClassNotFoundException {

Class cls = Class.forName("satkan.persistant." + classType...
);

Query query = pm.newQuery(cls);
209 query.setOrdering("Id ascending");

Collection results = (Collection) query.execute ();
Iterator itr = results.iterator ();
ArrayList <String > alist = new ArrayList <String >();
int j = 0;

214 while (itr.hasNext ()) {
Component obj = (Component) itr.next();
if (obj.getAvailability () >= availability) {

alist.add(obj.getId());
}

219 j++;
}
String [] strings = new String[alist.size()];
for (int i = 0; i < alist.size(); i++) {

strings[i] = alist.get(i);
224 }

query.closeAll ();
return strings;

}

229 public String [] get_Id_ComponentLocations () throws ...
ClassNotFoundException {
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Class cls = Class.forName("satkan.persistant....
ComponentLocation");

Query query = pm.newQuery(cls);
// query.setOrdering ("Id");

234 Collection results = (Collection) query.execute ();
Iterator itr = results.iterator ();
String [] strings = new String[results.size()];
int loci = 0;
while (itr.hasNext ()) {

239 ComponentLocation obj = (ComponentLocation) itr.next()...
;

strings[loci] = obj.getId();
loci ++;

}

244 query.closeAll ();
return strings;

}

public int get_Component_num(String strn) throws ...
ClassNotFoundException {

249 int totalnumber = 0;
String [] str = this.get_Id(strn);
for (int i = 0; i < str.length; i++) {

Component comp = (Component) this.get_component_object...
(strn , str[i]);

totalnumber = totalnumber + comp.getAvailability ();
254 }

return totalnumber;
}

public String [] get_Availability(String classType) throws ...
ClassNotFoundException {

259
Class cls = Class.forName("satkan.persistant." + classType...

);
Query query = pm.newQuery(cls);
query.setOrdering("Id ascending");
Collection results = (Collection) query.execute ();

264 Iterator itr = results.iterator ();
String [] strings = new String[results.size()];
int i = 0;
while (itr.hasNext ()) {

Component obj = (Component) itr.next();
269 strings[i] = String.valueOf(obj.getAvailability ());

i++;
}
query.closeAll ();
return strings;

274 }
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public String [] get_Id(String classType , String field1 , String...
field1Value , String field2 , String field2Value) throws ...

ClassNotFoundException {

Class cls = Class.forName("satkan.persistant." + classType...
);

279 Query query = pm.newQuery(cls , "this." + field1 + " == ...
field1Value && this." + field2 + " == field2Value");

query.declareParameters("String field1Value ,String ...
field2Value");

Collection result = (Collection) query.execute(field1Value ...
,field2Value);

Iterator itr = result.iterator ();

284 String [] strings = new String[result.size()];
int i = 0;
while (itr.hasNext ()) {

ComponentLocation obj = (ComponentLocation) itr.next()...
;

strings[i] = obj.getId();
289 i++;

}
query.closeAll ();
return strings;

}
294

public ArrayList <String[]> get_ConnectionTypes () throws ...
ClassNotFoundException {

Class cls = Class.forName("satkan.persistant....
ComponentLocation");

Query query = pm.newQuery(cls);
299 query.setOrdering("connectionType ascending");

Collection results = (Collection) query.execute ();
Iterator itr = results.iterator ();
int i = 0;
String type = "";

304 int count = 0;
ArrayList <String[]> typeCount = new ArrayList <String []>();

while (itr.hasNext ()) {
ComponentLocation obj = (ComponentLocation) itr.next()...

;
309 System.out.println(obj.getConnectionType ());

if (i == 0) {
type = obj.getConnectionType ();
count ++;
i++;

314 } else {
if (obj.getConnectionType ().equals(type)) {

count ++;
} else {
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String [] connectionType = new String [2];
319 connectionType [0] = type;

connectionType [1] = String.valueOf(count);
typeCount.add(connectionType);
type = obj.getConnectionType ();
count = 1;

324 }
}

}
String [] connectionType = new String [2];
connectionType [0] = type;

329 connectionType [1] = String.valueOf(count);
typeCount.add(connectionType);

query.closeAll ();
return typeCount;

334 }
private static PersistenceManager pm;

public void setAvailability(String componentId , int avai) ...
throws ClassNotFoundException {
// this.pm = Utilities.getPersistenceManager(false);

339 Class cls = Class.forName("satkan.persistant.Component");
Query query = pm.newQuery(cls , "this.Id == componentId");
query.declareParameters("String componentId");
Collection result = (Collection) query.execute(componentId...

);
Iterator itr = result.iterator ();

344 Object obj = itr.next();
Component objc = (Component) obj;

query.closeAll ();
pm.currentTransaction ().begin ();

349 objc.set_availabilit(avai);
pm.makePersistent(objc);
pm.currentTransaction ().commit ();

}
}

Listing A.23: Calculate Inertia Class
package satkan;

2 import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.logging.Level;
import java.util.logging.Logger;

7 import javax.vecmath.Matrix3d;
/**
* Calculates the Moment of inertia at the center of a assemly
* based on given properties , rotations and translation data
* of each components

12 *
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* */
public class CalculateInertia {

public CalculateInertia(ArrayList <Momentable > complist , ...
ArrayList <double[]> rotationLocal , ArrayList <double[]> ...
rotationGlobal , ArrayList <double[]> translation) {

17 this.list = complist;
this.listRtl = rotationLocal;
this.listRtg = rotationGlobal;
this.listTr = translation;

}
22

public CalculateInertia () {

list = new ArrayList <Momentable >();
sum_mass = 0;

27 center_of_mass [0] = 0;
center_of_mass [1] = 0;
center_of_mass [2] = 0;
firstMoments [0] = 0;
firstMoments [1] = 0;

32 firstMoments [2] = 0;
//set default values
for (int i = 0; i < 9; i++) {

inertia_xyz[i] = 0;
}

37 }
public double sum_mass;
private double [] center_of_mass = new double [3];
private double [] firstMoments = new double [3];
// Distance between the center of mass of satellite from ...

center of mass of each n components
42 private double [][] delta_xyz;

// Moment of inertia Ixx ,Iyy , Izz ,Ixy ,Ixz ,Iyz
private double [] inertia_xyz = new double [9];
private ArrayList <Momentable > list;
private ArrayList <double[]> listRtl;

47 private ArrayList <double[]> listRtg;
private ArrayList <double[]> listTr;

public void add(Momentable obj) {
list.add(obj);

52 }

// Calculate the total mass of the assembly
public double get_sum_mass () {

sum_mass = 0;
57 for (Momentable a : list) {

sum_mass = sum_mass + a.get_mass ();
}
return sum_mass;

}
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62
//sum of moments to find center of mass , by dividing it by ...

total mass of the system
public void sumfirstMoments () throws ClassNotFoundException {

firstMoments [0] = 0;
firstMoments [1] = 0;

67 firstMoments [2] = 0;
for (int j = 0; j < list.size(); j++) {

Momentable a = list.get(j);
double [] arrayTr = this.get_translation(j);
double [] arrayRt = this.get_rotation_global(j);

72 // convert center of mass into matrix form and multiply...
with global rotation matrix

Matrix3d mat1 = new Matrix3d ();
Matrix3d mat2 = new Matrix3d ();
mat1.set(arrayRt);
mat2.setRow(0, a.get_cg ());

77 mat2.mul(mat1);
// create a variable for rotated center of mass ...

coordinates
// define variable for rotated ceneter of gravity
double [] cog = new double [3];
mat2.getRow(0, cog);

82 System.out.println("rotated center of mass \n" + ...
Arrays.toString(cog));

for (int i = 0; i < firstMoments.length; i++) {
firstMoments[i] = firstMoments[i] + (arrayTr[i] + ...

cog[i]) * a.get_mass ();
}

}
87 }

public double [] get_center_of_mass () throws ...
ClassNotFoundException {
this.sumfirstMoments ();
for (int i = 0; i < center_of_mass.length; i++) {

92 center_of_mass[i] = firstMoments[i] / this....
get_sum_mass ();

}
return center_of_mass;

}

97 // distance between the center of the system and translated ...
center of individual component

public void delta_xyz () throws ClassNotFoundException {
delta_xyz = new double[list.size() ][3];
for (int i = 0; i < list.size(); i++) {

Momentable p = list.get(i);
102 //get translation values from Enum Translation

double [] arrayTr = new double [3];
arrayTr = this.get_translation(i);
double [] arrayRt = new double [9];
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arrayRt = this.get_rotation_global(i);
107 System.out.println("arrayRT \n" + Arrays.toString(...

arrayRt));
// convert center of mass in a matrix form and multiply...

with rotation matrix
Matrix3d mat1 = new Matrix3d ();
Matrix3d mat2 = new Matrix3d ();
mat1.set(arrayRt);

112 mat2.setRow(0, p.get_cg ());
mat2.mul(mat1);
// create a variable for rotated center of mass ...

coordinates
double [] cog = new double [3];
mat2.getRow(0, cog);

117 System.out.println("rotated center of mass \n" + ...
Arrays.toString(cog));

for (int j = 0; j < 3; j++) {
delta_xyz[i][j] = arrayTr[j] + cog[j] - ...

get_center_of_mass ()[j];
}

122 }
}

public double [] get_inertia_xyz () throws ...
ClassNotFoundException {
delta_xyz ();

127 for (int i = 0; i < 9; i++) {
inertia_xyz[i] = 0;

}

for (int i = 0; i < list.size(); i++) {
132 Momentable p = list.get(i);

Matrix3d localI = new Matrix3d ();
double [] localInertiaArray = new double [3];
localInertiaArray = p.get_localInertiaTensor ();

137 localI.setM00(localInertiaArray [0]);
localI.setM11(localInertiaArray [1]);
localI.setM22(localInertiaArray [2]);

Matrix3d R = new Matrix3d ();
142 Matrix3d Rtrans = new Matrix3d ();

double [] RotationArray = new double [9];
//use local rotation matrix to calculate local Inertia...

Tensor
RotationArray = this.get_rotation_local(i);
// apply rotation matrix

147 R.set(RotationArray);
Rtrans.transpose(R);
localI.mul(Rtrans);
localI.mul(R, localI);
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152 inertia_xyz [0] = inertia_xyz [0] + localI.m00 + p....
get_mass () * (Math.pow(delta_xyz[i][1], 2) + Math....
pow(delta_xyz[i][2], 2));

inertia_xyz [4] = inertia_xyz [4] + localI.m11 + p....
get_mass () * (Math.pow(delta_xyz[i][0], 2) + Math....
pow(delta_xyz[i][2], 2));

inertia_xyz [8] = inertia_xyz [8] + localI.m22 + p....
get_mass () * (Math.pow(delta_xyz[i][0], 2) + Math....
pow(delta_xyz[i][1], 2));

inertia_xyz [1] = inertia_xyz [1] + delta_xyz[i][0] * ...
delta_xyz[i][1] * p.get_mass ();

inertia_xyz [3] = inertia_xyz [3] + delta_xyz[i][0] * ...
delta_xyz[i][1] * p.get_mass ();

157 inertia_xyz [2] = inertia_xyz [2] + delta_xyz[i][0] * ...
delta_xyz[i][2] * p.get_mass ();

inertia_xyz [6] = inertia_xyz [6] + delta_xyz[i][0] * ...
delta_xyz[i][2] * p.get_mass ();

inertia_xyz [5] = inertia_xyz [5] + delta_xyz[i][1] * ...
delta_xyz[i][2] * p.get_mass ();

inertia_xyz [7] = inertia_xyz [7] + delta_xyz[i][1] * ...
delta_xyz[i][2] * p.get_mass ();

}
162 return inertia_xyz;

}
public String toString () {

try {
String info;

167 double [] inertia = new double [9];
inertia = this.get_inertia_xyz ();
DecimalFormat df = new DecimalFormat("#0.0000000");
info = "Moment of inertia " + "\n" + df.format(inertia...

[0]) + " " + df.format(inertia [1]) + " " + df....
format(inertia [2]) + "\n" + df.format(inertia [3]) +...
" " + df.format(inertia [4]) + " " + df.format(...

inertia [5]) + "\n" + df.format(inertia [6]) + " " +...
df.format(inertia [7]) + " " + df.format(inertia...

[8]) + "\nCenter of Mass: " + "\n" + df.format(this...
.get_center_of_mass ()[0]) + " " + df.format(this....
get_center_of_mass ()[1]) + " " + df.format(this....
get_center_of_mass ()[2]) + "\nTotal mass: " + "\n" ...
+ df.format(this.get_sum_mass ());

return info;
172 } catch (ClassNotFoundException ex) {

Logger.getLogger(CalculateInertia.class.getName ()).log...
(Level.SEVERE , null , ex);

return "";
}

}
177

public double [] get_translation(int listIndex) {
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return listTr.get(listIndex);
}

182
public double [] get_rotation_global(int listIndex) {

return listRtg.get(listIndex);
}

187
public double [] get_rotation_local(int listIndex) {

return listRtl.get(listIndex);
}

192 }

128



Bibliography

1. Arritt B. J., Buckley S.J. and Ganley J.M. “Development of a Satellite Structural
Architecture for Operationally Responsive Space”. SPIE Smart Structures and
Materials and NDE. Society of Photo-optical Instrumentation Engineers, San
Diego, California, March 2008.

2. Arritt B. J., Buckley S.J. and Ganley J.M. “Structural Health Monitoring: an
Enabler for Responsive Satellites”. SPIE Smart Structures and Materials and
NDE. Society of Photo-optical Instrumentation Engineers, San Diego, California,
March 2008.

3. Board, IEEE Standards. IEEE Standard Computer Dictionary: A Compilation
of IEEE Standard Computer Glossaries. Institute of Electrical and Electronics
Engineers, New York, 1st edition, 1990.

4. Commons, Wikimedia. Normal Distribution PDF. internet: com-
mons.wikimedia.org, May 2008.

5. Deitel H. M., Deitel P. J. Java How to Program,. Prentice Hall, 2nd edition,
2004.

6. Ferebee M.J., Monell D.W. and Troutman P.A. “Satellite Systems Design/Simu-
lation Environment - A Systems Approach To Pre-Phase A Design”. 35th AIAA
Aerospace Sciences Meeting and Exhibition, January 1997.

7. From J., Kramer S. and Pohl E. “A Small Satellite System Design Process”.
Aerospace and Electronics Conference, 1(2):423–429, July 1997.

8. Fronterhouse D., Lyke J. and Achramowicz S. “Plug-and-play Satellite
(PnPSat)”. AIAA conferance, January 2007.

9. Gan K. K., Kagan H. P. and Kass R. D. “Simple Demonstration Of The Central
Limit Theorem Using Mass Measurements”, September 2001.

10. Gray A., Abbena E. Modern Differential Geometry of Curves and Surfaces with
Mathematica. CRC Press, New York, 2nd edition, 2002.

11. Knight, D. “Concept of Operations for Operationally Responsive Space”. Amer-
ican Institute of Aeronautics and Astronautics, April 2006.

12. Lanza D., Lyke J. et al. “Responsive Space Through Adaptive Avionics”. Space
2004 Conference and Exhibit. American Institute of Aeronautics and Astronau-
tics, San Diego, California, September 2004.

13. Petter, S. Standard Deviation Diagram. internet: en.wikipedia.org, May 2008.

129



14. Puhlhofer T., Langer H. et al. “Multicriteria And Discrete Configuration And
Design Optimization With Applications For Satellites”. 10th AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference. American Institute of Aero-
nautics and Astronautics, Albany, New York, August 2004.

15. Puhlhofer T., Langer H. et al. “Space Plug-And-Play Avionics”. 3rd Respon-
sive Space Conference. American Institute of Aeronautics and Astronautics, Los
Angeles, California, April 2005.

16. Santangelo, A. “OpenSAT and SATBuilder: A Satellite Design Automation En-
vironment for Responsive Space”. 46th AIAA Aerospace Sciences Meeting and
Exhibition, January 2008.

17. Sierra K., Bates B. Head First Java. O’reilly, 2nd edition, 2005.

18. Team, ObjectDB Developer. ObjectDB Developer’s Guide. internet:
www.objectdb.com, May 2008.

19. Trunce R., Eddy C. “Responsive Space’s Spacecraft Design Tool (SDT)”. 4rd Re-
sponsive Space Conference. American Institute of Aeronautics and Astronautics,
Los Angeles, California, April 2006.

20. Turner, A.J. An Open-Source, Extensible Spacecraft Simulation And Modeling
Environment Framework. Master’s thesis, Virginia Polytechnic Institute and State
University, 2003.

21. Wertz, J.R. “The Need for Responsive Space”. 3rd Responsive Space Conference,
April 2005.

22. Wertz J. R., Larson W. J. Space Mission Analysis and Design. Springer - Verlag,
3rd edition, 1999.

23. Wertz J. R., Larson W. J. Reducing Space Mission Cost. Microcosm Press, 3rd
edition, 2005.

130




	1.pdf
	2.pdf
	3.pdf
	4.pdf

